DISS. ETH NO. 31284

PROTOCOL DESIGN AND ANALYSIS IN THE
SYMBOLIC MODEL

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES
(Dr. sc. ETH Zurich)

presented by
FELIX E. LINKER

born on 12.02.1995

accepted on the recommendation of

Prof. Dr. David Basin, examiner
Prof. Dr. Ralf Kiisters, co-examiner
Prof. Dr. Peter Miiller, co-examiner

2025



ABSTRACT

Recent years have seen substantial progress in the automated formal
analysis of security protocols in the symbolic model. In a formal anal-
ysis of a security protocol, one mathematically and formally proves
that it provides desired security guarantees. Formal analysis not only
establishes confidence in a design’s security, but also forces one to be
explicit about desired security guarantees and assumptions required
to establish them.

Given the many success stories, one may wonder why it has not
become a requirement for security protocols to be formally analyzed
prior to their deployment. One reason is likely that applying a formal
analysis to a new protocol remains challenging despite the advances
of recent years. First, it is non-trivial to identify a protocol’s desired
security guarantees, let alone formalize them such that they can be
proven. Second, automated security protocol verification tools like
Tamarin and ProVerif often do not scale well to large and complex pro-
tocols. Modern security protocols often use complex loop structures,
which introduce sources of non-termination that must be carefully
accounted for. In this thesis, we present contributions related to both
of these problems in two parts. We show how to achieve provable,
system-wide security guarantees and advance the state-of-the-art of
protocol verification in the symbolic model.

In the first part, we focus on identifying and formalizing system-
wide security guarantees, concretely long-term key authentication,
and we present two systems that provably provide such guarantees.
As many systems aiming to provide authentic long-term keys relied
on trust assumptions that were shown to often not hold in practice,
new alternative approaches were suggested. First, social authentica-
tion was suggested as an intuitive and usable paradigm for long-term
key authentication between end users. Using social authentication,
users authenticate their peers using digital identities managed by
identity providers. Second, it was suggested to augment systems
that provide long-term key authentication by relying on certifying
authorities with accountability mechanisms. Should an authority ever
maliciously attest a key’s authenticity, accountability mechanisms
make such misbehavior detectable and punishable. Thus, the hope is
that such misbehavior will not happen in the first place. We present
SOAP, a SOcial Authentication Protocol, which provides social authen-
tication, and ADEM, an Authentic Digital EMblem, which provides
authentication using an accountability mechanism, and we formally
prove both systems’ security.



In the second part, we turn our attention to complex protocols with
looping control structures. One of the main challenges for modern, au-
tomated protocol verifiers is that modern security protocols often use
complex loop structures, which introduce sources of non-termination
and complicate automated proof search. We present two ways of
using induction to prove properties of looping protocols using the
Tamarin prover. We first show how one can use trace induction, a
well-established proof methodology, to analyze looping protocols in
their full complexity with modern, state-of-the-art symbolic provers
by proving the iMessage PQ3 protocol secure. Second, we develop
and implement a novel cyclic induction mechanism for the security
protocol domain and show how it can be used to prove looping proto-
cols secure while requiring considerably less effort than when using
trace induction.



ZUSAMMENFASSUNG

Die formale Analyse von Sicherheitsprotokollen hat sich in den letzten
Jahren drastisch weiterentwickelt. Wenn man ein Sicherheitsproto-
koll formal analysiert, beweist man mathematisch rigoros, dass es
gewdiinschte Sicherheitsanforderungen erfiillt. Eine formale Analyse
etabliert nicht nur, dass ein Protokoll tatsichlich sicher ist, sondern
zwingt einen zudem, gewiinschte Sicherheitsanforderungen und Be-
weisannahmen zu formalisieren.

Man kann sich fragen, warum es trotz vieler Erfolgsgeschichten
nicht zum Standard geworden ist, Sicherheitsprotokolle formal zu
analysieren, bevor sie ausgerollt werden. Vermutlich ist ein Grund,
dass die formale Analyse eines neuen Protokolls nach wie vor heraus-
fordernd ist - trotz aller Fortschritte der letzten Jahre. Zum einen ist
es nicht trivial, die gewiinschten Sicherheitsanforderungen eines Pro-
tokolls zu identifizieren und zu formalisieren. Zum anderen stossen
Programme zur automatisierten, formalen Analyse von Protokollen,
wie zum Beispiel Tamarin und ProVerif, an ihre Grenzen, sobald sie
auf grosse und komplexe Protokolle angewendet werden. Moderne Si-
cherheitsprotokolle verwenden jedoch oft komplexe Loop-Strukturen,
die mit Vorsicht gehandhabt werden miissen, da sie leicht dazu fiih-
ren, dass Computer-gestiitzte Beweise nicht terminieren. In dieser
Dissertation prasentieren wir wissenschaftliche Beitrdge zu beiden
Problemstellungen in zwei Teilen.

Im ersten Teil konzentrieren wir uns auf das Identifizieren und
Formalisieren von Sicherheitseigenschaften. Genauer konzentrieren
wir uns auf die Authentifizierung von Public Keys und préasentieren
zwei Systeme, die dies ermoglichen. Viele Systeme, deren Ziel es war,
klassisch Public Keys zu authentifizieren, stellten sich im Nachhinein
als unsicher heraus, weil sie auf Annahmen beruhten, die in der Praxis
nicht erfiillt wurden. In Konsequenz wurde vorgeschlagen, das Ziel
der klassischen Public Key Authentifizierung fallen zu lassen, und
stattdessen andere Sicherheitseigenschaften zu garantieren. Der erste
Vorschlag heisst “Social Authentication” und Social Authentication
verspricht intuitive und benutzerfreundliche Authentifizierung von
Public Keys. Wenn ein Nutzer den anderen “sozial authentifiziert”,
wird tiberpriift, dass der Peer eine oder mehrere digitale Identitaten
kontrolliert, die fiir gewohnlich von einem Provider wie einem Social
Network verwaltet werden. Der zweite Vorschlag sieht vor, Systeme,
in denen Public Keys von Zertifizierungsstellen attestiert werden, um
einen Rechenschaftsmechanismus zu ergénzen. Sollte eine solche Zer-
tifizierungsstelle falschlicherweise Public Keys attestieren, kann das
durch einen solchen Mechanismus festgestellt und bestraft werden.



Die Hoffnung ist, dass sich Zertifizierungsstellen somit von Anfang an
korrekt verhalten. Wir prasentieren zwei Systeme und analysieren bei-
de formal: SOAP, ein “SOcial Authentication Protocol”, implementiert
Social Authentication und ADEM, ein “Authentic Digital EMblem”,
nutzt einen Rechenschaftsmechanismus.

Im zweiten Teil wenden wir uns der formalen Analyse von komple-
xen Protokollen mit loopenden Kontrollstrukturen zu. Fiir moderne
Programme zur automatisierten, formalen Analyse von Protokollen ist
es eine der grossten Herausforderungen, mit solchen Kontrollstruktu-
ren umzugehen. Sie verkomplizieren die automatisierte Beweissuche
und fithren schnell dazu, dass diese Suche nicht terminiert. Wir
verwenden zwei mathematische Induktionsverfahren, um Computer-
gestiitzte Beweise iiber solche loopenden Kontrollstrukturen zu fithren.
Zunichst zeigen wir, wie “Trace Induktion” verwendet werden kann,
um zu Beweisen, dass das iMessage PQ3 seine hohen, selbstgesteckten
Sicherheitsanforderungen erfiillt. Wir verwenden dazu Tamarin, ein
Programm zur Analyse von Sicherheitsprotokollen. Danach entwi-
ckeln wir ein neues, zyklisches Induktionsverfahren zur automatisi-
serten Beweisfiihrung fiir Sicherheitsprotokolle. Wir implementieren
dieses zyklische Induktionsverfahren fiir Tamarin und zeigen, dass
Beweise, die auf zyklischer Induktion beruhen, mit deutlich weni-
ger Aufwand konstruiert werden konnen als Beweise, die auf Trace
Induktion beruhen.
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INTRODUCTION

1.1 FORMAL ANALYSIS OF SECURITY PROTOCOLS

Recent years have seen substantial progress in the automated formal
analysis of security protocols. A formal analysis of a security protocol
is an attempt to mathematically and formally prove that it provides
desired security guarantees, and numerous real-world protocols have
been analyzed using state-of-the-art, automated tools such as Tamarin
[112, 139] and ProVerif [25, 26]. Ideally, formal analysis accompanies a
protocol’s development. This is what happened for TLS 1.3 [129], the
backbone of today’s Internet, which was formally analyzed during its
standardization efforts, securing it by design [51, 52].

Unfortunately, formal analysis during the design phase has neither
always been nor has it become the norm. The EMV protocol powers
the communication of credit cards with credit card terminals. EMV
is used in more than 80% of all transactions that use card payment
[14], but its development was not accompanied by formal analysis.
More than 20 years after the protocol’s initial release and deployment,
researchers found the protocol to be insecure while trying to prove it
secure [14, 15]. Concretely, attackers could bypass the requirement to
enter a PIN when paying with stolen credit cards.

A formal analysis of a security protocol includes three steps. First,
the protocol, its environment, and assumptions on the adversary’s
capabilities are modeled in a mathematical framework, for example,
as a state transition system. Second, the protocol’s desired security
guarantees are formalized, for example, as first-order logic formulas.
Third and finally, one proves that the protocol model provides the
formalized properties in the modeled environment and against the
adversary considered. Formal analysis not only establishes confidence
in a design’s security, but also forces one to be explicit about desired
security guarantees and assumptions required to establish them. Of-
tentimes, precisely defining security guarantees and assumptions is as
valuable as the proof itself.

The analysis of security protocols typically takes place in either
the computational setting or in the symbolic model of cryptography, and
both have their relative strengths and weaknesses. In the computa-
tional setting, protocols are analyzed with respect to computational
definitions of security. Agents manipulate bit strings, the adversary’s
capabilities are modeled by probabilistic polynomial-time Turing ma-
chines, and security definitions are thus probabilistic. These models
support a detailed analysis of cryptography. However, the proofs

10



1.1 FORMAL ANALYSIS OF SECURITY PROTOCOLS

can be quite complex and hence they typically involve their own ab-
stractions or protocol simplifications. Moreover, given that the proofs
are traditional pen-and-paper arguments, they are more error-prone
than proofs checked by computers. There are exceptions, namely
computational proofs constructed with tools like CryptoVerif [24] or
ProofFrog [62], but these are usually limited to the study of relatively
simple combinations of primitives.

In the symbolic model of cryptography, messages are represented
as terms in a term algebra (rather than bit-strings) and one uses possi-
bilistic rather than probabilistic definitions of security. Tamarin, the
tool that was used to analyze the TLS 1.3 and EMV protocols, ProVerif,
and DY* [19] are examples of tools constructing proofs in this setting.
For example, to show that the adversary cannot learn a secret, one
would use these tools to prove that, no matter how arbitrarily many
protocol runs are interleaved, including runs where the adversary is
active, the adversary cannot possibly learn the intended secret.

There are benefits to having both computational and symbolic
proofs as they both have their relative strengths. Computational
proofs capture the detailed cryptographic assumptions on the op-
erators used. They can also capture the adversary’s advantage in
attacking a protocol, by bounding the probability of success for an
adversary with given computational resources. In contrast, symbolic
proofs support machine-checked proofs much better, using different
computer-supported proof techniques, like constraint solving and
mathematical induction. Such proofs may be constructed automati-
cally or interactively, and attempts to prove false statements generally
yield attacks on the specified properties, such as for the EMV protocol.
This support for automation typically allows for larger protocol models
and more complex adversary capabilities and operational semantics,
considering unboundedly many protocol participants and interleaved
parallel sessions, and verifying these against detailed, fine-grained
security properties.

Given success stories like the formal analysis of TLS 1.3 or EMV,
which were both carried out in the symbolic model, one may wonder
why it has not become a requirement for security protocols to be
formally analyzed prior to their deployment. One reason is likely
that applying a formal analysis to a new protocol remains challeng-
ing despite the advances of recent years. First, it is non-trivial to
identify a protocol’s desired security guarantees, let alone formalize
them such that they can be proven. While there are many standard
formal notions that capture the security guarantees of individual cryp-
tographic primitives in the computational settings, this is often not
the case for security guarantees of entire systems built from many
such components. Second, automated security protocol verification
tools like Tamarin and ProVerif often do not scale well to large and
complex protocols. Modern security protocols often use complex loop

11



1.2 FORMAL LONG-TERM KEY AUTHENTICATION GUARANTEES

structures, which introduce sources of non-termination that must be
carefully accounted for.

In this thesis, we present contributions related to both of these
problems. We show how to achieve provable, system-wide security
guarantees and advance the state-of-the-art of protocol verification
in the symbolic model. In Part i, we focus on the formalization of
system-wide security guarantees as trace properties. Concretely, we
consider long-term key authentication and present two systems that
provably provide these guarantees. In Part ii, we turn our attention
to complex protocols with looping control structures. We show how
both an existing and a novel proof technique can be used to formally
prove properties of protocols with loops.

1.2 FORMAL LONG-TERM KEY AUTHENTICATION GUARANTEES

Security protocols can only provide their desired security guarantees
if peers use each other’s authentic cryptographic keys when running
them. For example, when encrypting a message for a recipient, that
message can only remain secret between the sender and intended
recipient if the intended recipient’s key was used for encryption.
Using inauthentic keys immediately voids any security provided by
the encryption: A user may encrypt their messages for the adversary
directly. To address the non-trivial problem of obtaining each other’s
authentic cryptographic keys, protocols most often use or specify
a public key infrastructure (PKI), which associates pseudonyms with
(ideally) authentic public keys. The property that PKIs aim to establish
is long-term key authentication.

The most prominent example of a PKI is the Web PKI, which
associates domain names with public keys and thus powers all HTTPS
connections made by browsers. In the Web PKI, certificate authorities
(CAs) sign certificates that attest which domain names should be
associated with which public keys. Browsers come with pre-installed
root CAs which the browser trusts, and CAs can sign CA certificates
that declare other CAs as trusted. A browser then trusts all root CAs
and all CAs for which it has a CA certificate signed by another trusted
CA. By default, any CA can sign a certificate for any website, and thus
compromise of a single CA can have devastating consequences. The
inevitable happened in 2011 when it was discovered that the DigiNotar
CA was compromised. DigiNotar keys were used to sign fraudulent
certificates for google.com, which were used to attack Iranian users.
An investigation of this attack found that DigiNotar had issued at
least 531 fraudulent certificates [95].

A system less often thought of as PKI is secure messaging, and
secure messaging has a history of vulnerabilities too. Modern, secure
messengers like iMessage, Signal, or WhatsApp promise their users
end-to-end encryption: Users, typically identified by phone numbers,

12



1.2 FORMAL LONG-TERM KEY AUTHENTICATION GUARANTEES

7”7

can send messages to one another, and only the two intended “ends
should know about those messages” contents. End-to-end encryption
consists of two components. Clients first use a key directory operated
by their messaging provider to obtain their peers’ long-term public
keys. They then use an end-to-end encryption protocol to send and
encrypt their messages.

Many modern messengers, perhaps surprisingly, allow their users
to communicate without properly authenticating their chat partners.
When they opt to do that, users trust the authentication performed by
the application provider during registration and that the application’s
key directory correctly reports other users’ public keys to them. For
messengers that use phone numbers to identify their users, registration
only requires entering an SMS one-time password (OTP) that the
messaging provider sent to a phone number claimed by a registering
user. This key distribution practice requires trusting both the security
of SMSes and the application servers themselves, but the breach of
Signal’s SMS OTP provider Twilio [157] calls into question whether
that trust is warranted. Through social engineering, attackers gained
read access to Signal SMS OTPs and re-registered phone numbers, one
of which belonged to a prominent journalist [70].

Motivated by the above attacks, recent work proposed to approach
long-term key authentication from two new angles. Concretely, it was
suggested to augment PKIs with transparency systems and to design
PKIs such that they provide social authentication.

A number of transparency systems have been proposed as an alter-
native to key authentication [41, 96, 97, 99, 100, 108, 113, 165]. In a
transparency system, providers such as CAs or messaging providers
must commit to the pseudonym-to-key bindings they attest in such a
way that they later cannot deny having made that attestation. Trans-
parency systems suggest augmenting long-term key authentication
with an accountability mechanism. Should a provider ever maliciously
attest a pseudonym-to-key binding, that attestation is stored in a
transparency log. This makes any misbehavior detectable and allows
holding providers accountable. Thus, the hope is that providers will
not misbehave in the first place.

Social authentication was suggested as a simple and usable long-
term key authentication protocol for secure messaging [86, 159]. When
performing social authentication, users verify that their actual chat
partner controls accounts at different identity providers (IdPs), for ex-
ample, their social media providers, which they know are controlled
by their intended chat partner.

In Part i of this thesis, we present two systems that use social
authentication and accountability respectively to provably provide
long-term key authentication guarantees. We start by presenting SOAP,
a SOcial Authentication Protocol, a secure and practical protocol that
implements social authentication, in Chapter 4. Although past works

13



1.3 AUTOMATED ANALYSIS OF LOOPING PROTOCOLS

have presented designs, social authentication has never been studied
as an authentication protocol. No prior work defined what security
guarantees social authentication should provide, let alone considered
whether a given design correctly provides those guarantees. We
precisely define and prove that SOAP provides the security objectives
of social authentication.

Afterwards in Chapter 5, we present ADEM, an Authentic Digital
EMBblem, which tackles a novel security problem that arises in times
of armed conflict. International humanitarian law (IHL) mandates
that military units must not target medical facilities, such as hospitals.
The emblems of the Red Cross, Red Crescent, and Red Crystal are
used to mark physical infrastructure (e.g., by a Red Cross painted
on a hospital’s rooftop), thereby enabling military units to identify
those assets as protected under IHL. ADEM extends such markings
to digital infrastructure such as servers and networks, which raises
unique security challenges. ADEM solves these challenges by relying
on an accountability mechanism. In that, it follows the ideas behind
transparency systems. The marking of assets with ADEM was de-
signed so that one can hold parties accountable who illegitimately
mark unprotected infrastructure. Next to ADEM itself, we present
a formal analysis, which includes a formal definition and machine-
checked proofs of ADEM’s system-wide accountability guarantees
that we use to provide authenticity.

1.3 AUTOMATED ANALYSIS OF LOOPING PROTOCOLS

One of the main challenges for modern, automated protocol verifiers
is that modern security protocols often use complex loop structures,
which introduce sources of non-termination and complicate automated
proof search. In particular, modern end-to-end encryption protocols
used in secure messaging have become quite intricate and use complex,
nested loop structures.

Historically, end-to-end encryption protocols provided security
against adversaries that can compromise participants” long-term key
material and that control the network over which messages are ex-
changed. By now, secure messengers aim to additionally guaran-
tee secure communication against adversaries who can compromise
partial session state during protocol execution or who may obtain
quantum computing capabilities in the future. In particular, concerns
have focused on “harvest now, decrypt later” quantum adversaries,
who exploit the decreasing cost of mass storage to intercept and store
ciphertexts. Such adversaries anticipate future developments in quan-
tum computing and aim to decrypt ciphertexts as soon as sufficiently
powerful quantum computers become available.

Considering partial session state compromise led to the study of
the security guarantees forward secrecy and post-compromise security [27,
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49]. Forward secrecy provides resistance against partial session state
compromise in the future and guarantees that messages exchanged
prior to the compromise remain secure. Post-compromise security
provides resistance against partial session state compromise in the
past. A protocol providing post-compromise security enables its
clients to recover security after a compromise and to securely exchange
messages in the future again.

One of the first protocols to provide both forward secrecy and
post-compromise security was the Signal protocol, which extended
the design of the Off-the-Record Messaging protocol [30]. The Signal
protocol combines the X3DH handshake protocol [110] for key estab-
lishment with the double ratchet algorithm [121] for key derivation
and message encryption. The handshake protocol establishes a shared
secret using long-term key material. In the double ratchet, clients con-
tinuously update that shared secret with fresh, ephemeral key material
in an outer ratchet and use that shared secret to derive per-message
encryption keys in an inner ratchet. Clients use non-invertible Key
Derivation Functions (KDFs) to update the shared secret and derive en-
cryption keys, which coined the term “ratcheting.” The key schedule
is like a ratchet that can only move in one direction.

Intuitively speaking, the double ratchet provides forward secrecy
because clients continuously update message encryption keys using
non-invertible KDFs. It provides post-compromise security because
clients use fresh, ephemeral key material to update the shared secret.
Even if an adversary learned, for example, the shared secret now,
they cannot learn previously encrypted messages. To achieve that,
the adversary would need to learn prior shared secrets, which they
cannot as that would require inverting the key derivation function.
And even if an adversary compromised the shared secret now, clients
recover from that compromise by updating the shared secret with new,
uncompromised ephemeral key material.

To protect against “harvest now, decrypt later” adversaries, more
and more end-to-end encryption protocols now integrate quantum-
secure Key Encapsulation Mechanisms (KEMs) into the key estab-
lishment or double ratchet. Extensions are necessary because end-to-
end encryption protocols traditionally rely on Elliptic-Curve Diffie-
Hellman (ECDH) cryptography, which in turn relies on computational
hardness assumptions that have been shown to not hold against quan-
tum computers. Signal extended its handshake protocol X3DH to
the quantum-secure version PQXDH [91], and a proposal to upgrade
Signal’s double ratchet algorithm to also provide quantum security
has been published but not been deployed yet [58]. With the iMessage
PQj3 protocol, Apple were the first to integrate KEMs into a double
ratchet construction [2]. Their integration of KEMs into the double
ratchet complicates its looping behavior even further, as it additionally
adds a non-deterministic branch to the outer ratchet.
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Doublet-ratchet constructions have become the state-of-the-art de-
sign for end-to-end encryption, with Signal, WhatsApp, and iMessage
all relying on them. The Signal protocol, including its double ratchet,
has been extensively studied in both the computational [8, 16, 23,
39, 48] and symbolic model [19, 22, 54, 88]. Curiously, however, no
approach in the symbolic model has yet faithfully captured all steps
of a double ratchet protocol. For example, no approach in the sym-
bolic model captured Signal’s inner ratchet, making it impossible to
accurately prove all forward secrecy and post-compromise security
guarantees provided by the protocol.

In Part ii, we present two ways of using induction to prove proper-
ties of looping protocols such as the double ratchet using the Tamarin
prover. In Chapter 7, we first show how complex, looping protocols
can be analyzed in their full complexity with modern, state-of-the-art
symbolic provers by proving the iMessage PQ3 protocol secure. For
that, we use Tamarin’s trace induction mechanism, a well-established
proof methodology, supported by Tamarin since its release and sup-
ported by ProVerif as well [26]. Our proofs capture all security guaran-
tees provided by iMessage PQ3 without abstracting the protocol flow
in any way. In particular, we prove that iMessage PQ3 provides com-
plex and fine-grained forward secrecy and post-compromise security
guarantees, and we consider a complex adversary model in which the
adversary may gain access to a quantum-computer in the future.

As a second approach, we adapt cyclic induction to the security
protocol domain in Chapter 8, and we show how it can be used to
prove protocols like those using double ratchets secure while requir-
ing considerably less effort than when using trace induction. Cyclic
induction exploits recurring patterns in proofs and can thus elegantly
tackle looping protocols. When using this new induction mechanism,
Tamarin can prove many lemmas that previously required, often com-
plex, auxiliary lemmas, and can prove new lemmas for protocols that
were previously out of reach. We showcase our approach on a detailed
model of the Signal protocol.

1.4 OUTLINE

We use the Tamarin prover in each of our chapters. We use it to
formally analyze SOAP, ADEM, and iMessage PQ3 (Chapters 4, 5,
and 7), and we extend it to support cyclic induction (Chapter 8). To
prepare for all that, we introduce the Tamarin prover in Chapter 2.

We consider the problem of long-term key authentication in Part i,
where we introduce and formally analyze SOAP and ADEM. In Part ii,
we show how to formally analyze looping protocols in the symbolic
model using both trace induction and cyclic induction. We draw
conclusions in Chapter 9.
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1.5 PUBLICATIONS

This doctoral thesis is based on the following publications.

¢ Felix Linker and David Basin, “ADEM: An Authentic Digital
EMblem,” in Proceedings of the 2023 ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2023.

¢ Felix Linker and David Basin, “SOAP: A Social Authentication
Protocol,” presented at the 33rd USENIX Security Symposium,
2024.

¢ Felix Linker, Ralf Sasse, and David Basin, “A Formal Analysis of
Apple’s iMessage PQ3 Protocol,” presented at the 34th USENIX
Security Symposium, 2025.

¢ Felix Linker, Christoph Sprenger, Cas Cremers, and David Basin,
“Looping for Good: Cyclic Proofs for Security Protocols,” to
appear in in Proceedings of the 2025 ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2025.

In this thesis, we update the formal analysis of ADEM’s account-
ability properties slightly in Chapter 5. Moreover, the paper presenting
the formal analysis of iMessage PQ3 provides a general proof method-
ology for looping protocols, which we omit in our presentation of the
work in Chapter 7.

1.6 ARTIFACTS

We provide a number of artifacts related to each of our contributions,
which we list below.

SOAP: A SOCIAL AUTHENTICATION PROTOCOL A formal model
and proofs are available at [69]. Prototypes are available at [144, 145].
A web-based prototype is accessible at: https://soap-proto.net/.
A video demo of a Signal-based prototype is available at: https:
//youtu.be/Ip_RAF8PRrM.

ADEM: AN AUTHENTIC DIGITAL EMBLEM A formal model and
proofs are available at [68]. A technical specification as referenced in
this thesis is available at [5].

A FORMAL ANALYSIS OF APPLE’S IMESSAGE PQ3 PROTOCOL A
formal model and proofs, as well as case studies and a pseudocode
specification of iMessage PQ3 are available at [102].

CYCLIC INDUCTION FOR SECURITY PROTOCOL VERIFICATION
The source code of a modified Tamarin implementation as well as case
studies are available at [103].
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THE TAMARIN PROVER

Tamarin [112, 139] is a model checker for security protocol verification,
which incorporates a constraint solving algorithm based on symbolic
backwards search. It was originally introduced in two doctoral theses
[111, 138]. Later extensions added support for various features, for
example, observational equivalence properties [13], the XOR operator
[59], and a subterm predicate and natural numbers [53]. In this chapter,
we introduce the Tamarin prover following [53, 111].

2.1 PRELIMINARIES

A multiset {a, b,...}ti is a set of items a, b, etc., where each item
can occur multiple times. We denote a multiset’s cardinality by |M]|.
We extend the usual operations and constants for sets to multisets
using the f superscript, e.g., @' is the empty multiset. Whenever we
use relations, e.g., C*, or functions, e.g., U?, on multisets, they take
cardinality into account. For example:

{a,a}* C* @ U {a,a}* = {a,a}*
{a,a}" % {a,a}" \* {a} = {a}}

A list [a,b,...] is an ordered sequence of items. We sometimes
write L to denote that a variable L is a list. We again write |L|
for a list’s cardinality, and denote the set of a list L’s indices by
idx(L) = {1,...,|L|}. Lists can be indexed using subscript notation,
for example, [, b]; = a. We use set(X) to denote the set of all elements
in a list or multiset X.

An order-sorted signature ¥ = (S, <,F) consists of a set of sorts
S, a partial order (<) C S x S on the sorts, and a set of function
symbols F. Every sort s € S has an infinite set of associated variables
Vs and constants Cs;, which are all pairwise disjoint. We write v:s
forv € Vs and V = [Jseg Vs for the set of all variables. Functions in
F have the form f : s; X --- X5, — s (where sq,...,5,,5 € S). We
require that every connected component C in (S, <) has a supremum,
which we denote by top(s) for s € C. Furthermore, we require that if
fisyx---xs, —s€Fthen f:top(sy) X - x top(s,) — top(s) € F.
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2.2 PROTOCOL SPECIFICATIONS

For s € S, the terms of sort s, 75, are defined inductively as follows.
Let s1,...,5, € Sand t; € T3, ... t, € 7'25". 75 is the smallest set
such that:

vels ifve Vs

ceTs if c € Cs
fty,...ty) €Tg if fisyx---xs, +>s€F
te TS ifteTs,s <s

The set of all terms of an order-sorted signature is 7y = Uses 7. A
term is ground if it contains no variables.

A substitution is function ¢ : V — Ty, mapping variables to terms.
We require that substitutions respect sorts, i.e., variables of sort s must
be mapped to terms of sort s’ < s. A substitution can be defined
explicitly as a list of mappings, e.g., o = [a — b, c — d] substitutes a
with b and ¢ with d. Such a substitution is the identity on all variables
not mapped in that list. The extension of a substitution ¢ by a new
list of mappings is denoted by cla — b]. We extend substitutions
homomorphically to terms and other constructs (to be defined later)
as usual, and write to for an application of ¢ to a term ¢t € 7x. For
example, for t = f(a,b) and o = [a — g(c)], we have to = f(g(c),b).
A valuation is a substitution to ground terms. Valuations can also be
defined as explicit lists. In that case, variables not mapped in that list
are irrelevant and can map to arbitrary terms.

2.2 PROTOCOL SPECIFICATIONS

Tamarin works in the symbolic model, where protocol messages are
represented as elements of a term algebra. An equational theory
encodes the semantics of these terms. Along with the equational
theory, the protocol and attacker behavior are specified by a set of
multiset rewriting rules. A Tamarin protocol model is a pair of an
equational theory and a set of multiset rewriting rules.

We will later extend Tamarin to support cyclic proofs in Chapter 8.
We do not need the details of Tamarin’s equational theories and
adversarial reasoning to do so, and thus introduce equational theories
only at a high level. For full details, we refer the reader to [53, 111].

2.2.1  Equational Theories

Protocol models are defined with respect to an order-sorted signature
Y and an equational theory E, a set of equations on terms admitted by
the signature. Typically, the signature and equational theory model
cryptographic operations and their relationships. For example, the fol-
lowing equation defines the symbolic model of symmetric encryption,
formalizing that decrypting an encryption with the same key yields
the original message: sdec(senc(m, k), k) = m.



2.2 PROTOCOL SPECIFICATIONS

In this thesis, we fix the sorts in X to msg, fresh, pub, and nat. fresh,
pub, and nat are subsorts of msg. Sort fresh models fresh, unguessable
values such as cryptographic random numbers. Sort pub models
publicly known values, e.g., constants such as message tags or public
parameters of protocols such as group generators. The sort nat was
introduced in [53] for modeling natural numbers, and we base our
definitions with respect to nat on that paper. Public constants are
denoted by single-quoted strings, e.g., ‘tag’ is a constant. There is only
one constant for nat, which is %1. We sometimes prefix variables with
a sort-specific symbol. Variables in fresh are prefixed with ~, variables
in pub with $, and variables in nat with %. When not explicitly
mentioned and not clear from context, a variable without prefix or
sort annotation is of sort msg.

When modeling a theory in Tamarin, users define the protocol
model’s signature and equational theory E by importing pre-defined
equational theories with associated signatures and by defining their
own functions and equations. All reasoning about the protocol then
happens modulo E. We use the subscript or to indicate that an
operator o, e.g., = or €, is considered modulo E.

User-defined functions cannot be arbitrary. For example, the equa-
tional theory must have the finite variant property, and functions f
in ¥ are always of the form f : msg x - - - X msg — msg with the only
exception being the addition of the natural numbers equational theory
+ : nat x nat — nat [53]. The restrictions allow Tamarin to efficiently
decide whether the adversary knows certain terms, and Tamarin uses
them, for example, to compute adversary deduction rules from a
model’s signature and equational theory.

2.2.2  Multiset Rewriting Rules

In Tamarin, state transitions are modeled using multiset rewriting
rules. The global state consists of a multiset of ground facts, and
the rewriting rules define how the state is updated. Facts are similar
to predicates in first-order logic and are of the form F(ty,...,t,). F
is a fact symbol from a fact signature Xr,y, and fy,...,t, are terms
defined over the model’s signature . A fact is ground if all its terms
are ground. Facts typically model the local state of participants or
the network, e.g., who posses which keys, or what messages have
been sent out on the network. We consider the special, reserved fact
symbols Fr, In, Out, K, and K} of arity 1 in Xp,y. These symbols
respectively model generating a fresh, unguessable value, receiving
and sending a message over an insecure network, and adversary
reasoning.
Multiset rewriting rules in Tamarin have the form

(L, .. L) Har, .. ank> [, -0, 70)
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li, aj, r are facts and may use free variables (1 <i <m, 1 <j <mn,
1<k<o).l,..., I, are the rule’s premises, ai, . . ., a, the rule’s actions
(also called action facts), and rq, ..., 1, the rule’s conclusions. [ay, ..., ay,)
can be omitted when a rule has no actions. Rules can be instantiated
by a substitution ¢. One rule ri is another rule ’s instance if there
exists a substitution ¢ such that ro = ri. We write prems(r), acts(r),
and concs(r) for a rule r’s list of premises, actions, and conclusions
respectively. A rule (instance) is ground if all its facts are ground.

Facts are either persistent (preceded by a !) or linear. When a rule
is applied, the linear facts in its premise are removed from the global
state and replaced by the facts in its conclusion. Persistent facts are not
consumed when used in a rule’s premise. For example, the following
rule models sending a nonce, encrypted using a symmetric key, and
has no action facts as labels:

[Fr(n),Ltk(k)] — [Out(senc(n, k))].

Here, the persistent fact !Ltk models storing a long-term key.
A set of multiset rewriting rules P is a multiset rewriting system if

(i) no rule uses a fresh constant,
(ii) no rule’s premise contains an Out, !KT, or K} fact, and
(iii) no rule’s conclusion contains a Fr, In, !KT, or IK¥ fact, and

(iv) all fresh, msg, and nat variables used in a rule’s conclusion are
introduced in a rule’s premise.

Example 1. Consider the following model, which we introduce in
Tamarin’s source file syntax. Tamarin’s source file syntax closely
resembles the mathematical notation introduced so far, and we will
use both notations interchangeably.

1 rule KeyGen:
> [ Fr(~k) ]

--[ KeyGen($A) ]->
4 [ 'Ltk(3A, ~k) 1]

s rule KeyReveal:

7 [ 'Ltk($A, ~k) ]

8 --[ Compromised($A) 1->
o [ Out(~k) 1

rule Encrypt:

> [ Fr(~msg), 'Ltk($A, ~k) 1]
3 --[ Send($A, ~msg) ]->
[ Out(senc(~msg, ~k)) 1

This model consists of three rules, KeyGen, KeyReveal, and Send. These
rules model a party, identified by the public variable $A, generating
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a symmetric key and sending a message symmetrically encrypted
under that key. The message and key are modeled by the fresh
variables ~msg and ~k. Additionally, a party $A’s key may become
compromised by revealing their key to the adversary.

Built-In Rules

Tamarin uses a number of built-in rules to model the generation of
random values and the adversary deduction. The following rules
model generating fresh values:

FrEsH := [| — [Fr(x:fresh)].

Tamarin models adversary deduction by precomputing adversary
message deduction rules when a model is loaded in the prover. The
precise rules available to the adversary depend on the model’s signa-
ture ¥ and equational theory E. All adversary deduction rules use
three, unary facts: K, modeling adversary knowledge, IKY (also 'KD),
modeling adversary deconstruction, and KT (also 'KU), modeling
adversary construction. Furthermore, all rules respect certain normal
form condititions with respect to the equational theory E. We refer to
the set of all adversary deduction rules as ND (normal-form message
deduction rules).

We do not introduce how adversary deduction rules are computed
and which normal form conditions they respect. However, to provide
an intuition for how Tamarin’s adversary deduction rules work, we
showcase some next. The adversary can learn messages sent over the
insecure network via the IRECv rule:

(Out(x)] — [IKH(x)].

The adversary then can apply deconstruction rules using !K* facts
to decompose the term x into its constituents following the equa-
tions available in the model’s equational theory E. For example, the
adversary can access a tuple’s first element using the following rule:

K ()] = (1K ().
Using the CoErcE rule, the adversary can transition from !K* to
IKT:
1K (2)] KT ()= KT (2)).
Using 'K facts, the adversary can construct more terms using the

functions available in the model’s signature X. For example, given
two elements, the adversary can construct a tuple:

(KT (), 1K ()] KT ()b KT ().

Finally, the adversary can send a message over the insecure net-
work to a protocol participant using the ISEND rule:

(KT ()] H{K(x)}> [In(x)].
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Observe that this rule uses the action fact K.

Example 2. Consider again the model from Example 1. If the adversary
learned a participant’s long-term encryption from the rule KeyReveal,
they could learn all messages sent by that participant encrypted under
that key. In Tamarin, the action fact K in the IsEND rule formalizes that
the adversary learned a term. To learn the plaintext, the intuition is
that the adversary constructs the term sdec(senc(~msg, ~k), ~k), which
reduces to the plaintext ~msg. Formally, Tamarin will apply the
following sequence of multiset rewriting rules. Presume, the rules
KeyReveal and Encrypt were applied so that the respective Out and
'Ltk facts are in the state.

{Out(senc(~msg, ~k)), Out(~k), ILtk(~k) }*

— {IK}(senc(~msg, ~k)), |K+(~k), ... }F IRECV
— {IK(~msg),...}} (precomputed)
— {IKT(~msg),...}* CoErck, K (~msg)
— {In(~msg),...} IsenD, K(~msg)

In each line, we only reference newly added facts and omit old per-
sistent facts. We annotate the rule name and action facts added to
the trace on the right side. Tamarin generates the rule reducing
IK¥ (senc(~msg, ~k)) and !K¥(~k) to IK¥(~msg) from the sdec equation
during a precomputation phase.

2.3 SEMANTICS
2.3.1 Executions and Traces

Given a multiset rewriting system P, adversary deduction rules ND,
an equational theory E, and R = PU ND U {FresHu}, the tuple (R, E)
is a Tamarin or protocol model. Tamarin models induce a labeled state
transition system. The initial state is the empty multiset @¢. A state
transition is the application of a ground rule instance ri = qa}— r.
We use Ifacts(x) and pfacts(x) to denote the linear and persistent facts
respectively in x. ri can be applied if its premises are contained in
in the global state, which is then updated accordingly. Formally, the
state transition relation = (g r) is defined as:’

S =) (S \*lfacts(1)) Uf r  if Ifacts(l) C* S, pfacts(r) C set(S)

An execution is a sequence of labeled state transitions. We only
consider executions where each instance of FresH is unique. Each

Note that r is technically a list, but we understand the state update to add r as
multiset to S.
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2 : Fresh

Fr(k)

y

Fr(k)

1:Fresh

3 : KeyGen[KeyGen( 'a')]

Fr(m)

ILtk( ‘', k)

Y

Fr(m) | ILtk('a’, k )

4 : Encrypt[Send( 'a’, m )]

Out( senc(m, k) )

Figure 2.1: Dependency graph

execution has a corresponding trace, which is the list of sets of action
facts labeling each transition. The semantics of a Tamarin model is its
set of traces.

2.3.2  Dependency Graphs

Dependency graphs capture the sequence of rule applications and
dependencies between rule premises and conclusions. They are closely
related to the constraint systems used in Tamarin’s protocol analysis,
and they enable effective proof search. Figure 2.1 shows a dependency
graph for the theory shown in Example 1. Here, n and k are fresh
constants, and ‘a” is a public constant. Every node corresponds to a
ground rule instance with up to three parts. The upper part are the
rule’s premises, the lower part the rule’s conclusions, and the middle
part the rule’s timepoint, name, and action facts. When a rule has
no premises or conclusions, these parts are omitted. The timepoints
reflect at which point in time a rule was applied.

Definition 1 (Dependency graph). Let (R, E) be a Tamarin model.
A dependency graph is a tuple dg = (I, D) where I is a finite list of
ground rule instances in R, and D C IN?Z x IN2. A rule’s index in I is
its timepoint. We write (i,u) — (j,v) for ((i,u),(j,v)) € D, when D is
clear from the context. Here, (i, u) denotes the conclusion with index
u of the rule with index i in I. Similarly, (j,v) denotes the premise
with index v of the rule with index j. We require that edges correctly
connect premises and conclusions, i.e., i < j and the conclusion (i, u)
is equal modulo E to the premise (j,v). Furthermore, each premise
must have exactly one incoming edge, every linear conclusion has at
most one outgoing edge, and instances of FRESH are unique.

Definition 2 (Trace). A trace induced by a dependency graph dg =
(I,D) is a list trace(dg) of sets of action labels. Concretely, trace(dg) is
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of length I and every index i corresponds to the set of action labels at
timepoint i, i.e., to set(acts(I;)).

One can show that the dependency graphs of a model (R, E) induce
the same set of traces as the set of traces derived from the model’s
executions ([111, Theorem 3]). The trace of the dependency graph
shown in Figure 2.1 is:

(@, @, {KeyGen(‘a’)}, {Send(‘a’, m)}] .

To reason about adversary deduction in a dependency graph dg =
(I, D), we define the deconstruction-chain relation (--+44) € IN? x IN2.
The deconstruction rule tracks which terms the adversary decon-
structed to learn some other term. The relation is defined as the
smallest relation such that ¢ --+4, pifcisa IK+-conclusion in dg and
either:

(i) c=peD,or

(i) there is a premise (j, u) such that ¢ = (j,u) € D and (j, 1) --»4,
p.

2.4 PROTOCOL PROPERTIES

In Tamarin, protocol properties are expressed as first-order logic trace
properties, which are given by closed trace formulas. To reason about
temporal ordering of events, we introduce a new sort tmp, incompa-
rable to msg, for temporal values and variables. The constants of tmp
are the elements of Q.

For a fact f, temporal variables i and j representing timepoints,
and terms t and u, atomic trace formulas are:

1. false L,
2. action formulas f@i, and
3. the predicates for

(a) timepoint equality i = j,
(b) timepoint ordering i < j,
(c) term equality t = u, and

(d) subterm relation t C u (also written ¢+ < u; introduced in

[53])-

Trace formulas can be combined with the logical connectives -, A and
fresh and msg variables can be existentially quantified. As usual, we
use V, = and universal quantification as derived connectives. We
wri‘te fo(g) for the free variables and fv,,,,(¢) for the free temporal
variables of a formula ¢.
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We assume that all trace formulas are guarded. This means that
all formulas using existential or universal quantifiers are of the form
JX. f@i A ¢ or VX. f@i —> ¢, where set(X) C fo(f@i), i.e., all bound
variables are free in the action formula f@i. Intuitively speaking,
guardedness requires that all instantiations of quantified variables are
related to a protocol execution (and its trace) via some action fact f@i.
We write ¢ for —¢’s negation normal form.

Trace properties to be proven in Tamarin are called lemmas. For
example, the following lemma expresses a property of the theory
introduced in Example 1. It models that a message m sent by a party
p either stays secret (there exists no action fact K on the trace), or p
revealed its key to the adversary:

Vp,m,j.Send(p, m)@j = (—3x. K(m)@x) v (Ix.Compromised(p)@x).

Given a valuation 6 of the free variables of ¢, we write (tr,0) =g ¢
to mean that the trace tr satisfies ¢ under the valuation 6. Note that
we interpret variables of sort s in the set of ground terms of sort s.
As all functions in X (except for +) are of sort msg, this means that
variables of sort msg and nat are interpreted as ground terms, and
fresh, tmp, and pub as constants. The relation |=g is defined as follows.

(tr,0) Eg L never

(ti’, 9) |:E f@l if 9(1) S idx(tr) /\f9 € tr@(i)

(tr,0) Epi<j if 6(i) <0(j)

(tr,0) e i =) if0(i) = o))

(t?’, 9) |:E tl = tz if t19 =E f29

(tr,0) =g t1 T tp if 1 is a strict subterm of t,, for details see [53]
(tr,0) =g —¢ if not (tr,0) =g ¢

(tr,0) = e ANy if (tr,0) =g @ and (t1,0) =p ¢

(tr,0) =g 3x:s.@  if for a ground term u € T, (tr,0[x — u]) =g ¢

A trace formula ¢ is valid for a protocol model (R,E), written
R E} ¢, if for all traces tr of (R,E) and every valuation 6, one has
(tr,0) = . @ is satisfiable in (R, E), written R =7 ¢, if there exists a
trace tr of (R, E) and valuation 6 such that (tr,0) =g ¢.

2.5 CONSTRAINT SYSTEMS

To verify that a trace property ¢ is valid for a model (R, E), Tamarin
negates the property and searches for an attack, i.e., a dependency
graph satisfying the negated property. If none is found, this proves
that the property holds.
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2.5.1 Syntax

Tamarin uses constraint systems to symbolically describe sets of depen-
dency graphs, i.e., potential attacks. There are five types of constraints:

1. Formula ¢: Trace formula ¢ must hold.
2. Node i : ri: Rule 7i is applied at timepoint i.

3. Edge (i,u) — (j,v): The fact at index u of node i’s conclusion is
used for node j’s premise at index v.

4. Premise f >, i: Node i has fact f as its premise at index v.
This constraint is used to generate new node constraints and to
connect their conclusions to the respective premises using edge
constraints. We call unsolved premise constraints open premises.

5. Chain (i,u) --» (j,v): The adversary learned the term at node
j’s premise v by deconstructing the term at node i’s conclusion
u, possibly transitively. This constraint reasons about which
messages an adversary may have learned specific terms from.

We extend the predicate = to also apply to facts and rule in-
stances. For example, for two facts f(t1,...,t,) and f'(uy,...,uy) the
constraint f(ty,...,t,) = f'(u1,...,uy) is equal to L if f # f’, and
{t1 = uy,...,ty = u,} otherwise (observe that n = m in this case).

A constraint system I is a set of constraints over a given protocol
model (R, E). Let C be the set of all constraint systems defined over
the given protocol. We extend the functions fo(-) and fv,,,,(-) from
formulas to constraint systems as expected.

2.5.2  Semantics

A model for a constraint system I' is a pair (dg,0) consisting of a
dependency graph dg = (I, D) and a valuation 6 of I'’s free variables.
We write (dg,0) |=f T if such a model satisfies all constraints in I'. We
define the relation |=; as the smallest relation such that:

(dg,0) =k ¢ if (trace(dg),0) =t ¢

(dg,0) |FEpi:ri if 0(i) € idx(I) A ri6 =g 19()
(dg,0) l=g (i,u) — (j,o) if (6(:),u) — (0(j),0) €

(dg,0) |Fg f>oi if (i) € idx(I) A f6 =E prems(lg(i))v
(dg,0) |=g (u) -=» (j,0) if (0(i), u) -->a5 (6(j),0)

A dependency graph dg is a solution for T’ if there exists a valuation
6 such that (dg,0) |=¢ I'. We write sols(T') for the set of all solutions
of I'.
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4 )

#vf : Fresh
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#j : Encrypt[Send( $A, ~msg )] !Ltk($A, ~k) D> j
Out( senc(~msg, ~k) )
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Figure 2.2: Example constraint system

Example 3. Tamarin can visualize constraint systems, and Figure 2.2
shows an example constraint system with two node, one edge, one
premise, and two formula constraints. These constraints are satis-
fied, for instance, by the dependency graph in Figure 2.1 under the
valuation 6 = [vf — 0, — 3, ~msg — m, ~k — k,$A — ‘a’].

Observe that we defined two logical relations for trace formulas.
We write (tr,0) =g ¢ if a trace tr satisfies ¢, and (dg,0) |=f ¢ if a
dependency graph dg satisfies ¢. There is a close connection between
= and |=g, namely, for any protocol model (R, E) and trace formula
¢, there exists a trace tr and valuation 0 such that (tr,0) =g ¢ if and
only if there exists a dependency graph dg and valuation 6 such that
(dg,0) |=k {9}, ie., sols({¢}) is non-empty. This reduces the formula
satisfaction problem to a constraint solving problem.

2.5.3 Timepoints and Temporal Order

Each constraint system I' induces a temporal order <r on its temporal
variables, which is defined as the smallest transitive relation such that
i <r ] if:
ii<jerl, or
(i) Ju,v.(i,u) — (j,v) €T, or
(iil) Ju,v.(i,u) --» (j,v) €T.

We write =<r for the reflexive closure of <r. Note that timepoints
in dependency graphs are linearly ordered (as they are in IN), whereas
a constraint system’s temporal order only partially orders temporal
variables, reflecting that the execution order of certain rules may be ir-

relevant (e.g., two parallel protocol runs can be arbitrarily interleaved).
They are related as follows.

Lemma 1 ([111, Lemma 7]). Suppose (dg,0) |~ I'. Then:
(i) if i <r j then 6(i) < 6(j) and
(ii) if i <r j then 6(i) < 0(j).
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2.6 CONSTRAINT REDUCTION AND DERIVATION TREES

We are now prepared to explain the idea behind Tamarin’s proof
methodology. To prove that R =g ¢ holds for a protocol model (R, E),
Tamarin uses a tree-search, constraint-solving algorithm. Every node
in the search tree corresponds to a constraint system. Initially, the tree
only contains a root constraint system {$}, which transforms proving
the validity of ¢ into proving the unsatisfiability of —¢, i.e., into an
attack search problem.

2.6.1 Constraint Reduction Rules

Constraint reduction rules refine the search tree’s leaf constraint sys-
tems and are of the form

[~ A{Tq,...,Tn}. (2.1)

Such a rule encodes that the constraint system I' can be solved by
solving any of the constraint systems I'y, ..., I',. We will often write
concrete reduction rules as I' ~» I'y || ... || T);, where the cases are
easier to distinguish. Given constraint systems I' and A, we write
(T,A) for T UA and use constraints as singleton constraint systems
when clear from context, for example, ¢ stands for {¢}.

To apply a constraint reduction rule to a constraint system, the
rule’s free variables must be instantiated with a substitution so that the
constraint reduction rule matches the constraint system. We therefore
close the relation ~» under substitutions, that is, T'o ~ {T'y0,...,T,0}
for all substitutions ¢ and rules (2.1).

There are different types of constraint reduction rules. For instance,
there are rules that

1. work on formula connectives, similar to the deduction rules of
first-order logic,

2. introduce new node constraints from f@i constraints,

3. backwards-complete premise constraints f >, i, by introducing
new nodes and edges connected to open premises,

4. enforce the single use of linear facts, or
5. derive contradictions, written as I' ~» L.
We list Tamarin’s constraint reduction rules in Appendix A.

Example 4. Consider the two constraint reduction rules Sg and §- @.
The former adds a node for an action formula f@i and performs a
case split over all rule instances that could introduce the respective
action fact. The latter derives a contradiction when there is an action
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fact but also an action formula that requires this fact to not be in the
constraint system. This typically happens when a formula requires
certain events, such as the reveal of a secret key, to not occur.

f’Eacts(ri)(i : T’i,f = f// r)
if (f@i) € T and f # !K'(t) and f@i ¢g as(T).

Sa: I’WH

ri€eR

Sﬂ,@ D~ L
if ﬂ(f@i) €T and (f@i) €E (ZS(F).

2.6.2  Derivation Trees and Proofs

When a constraint reduction rule (2.1) is applied to a leaf I' of the
search tree, the constraint systems I'; to I', become that node’s children.
We formally define Tamarin’s search tree as a derivation tree.

Definition 3 (Derivation Trees). A derivation tree D = (N, E,7y) for
a formula ¢ is a tree (N, &) with nodes N and edges € C N x N
together with a function v : N/ — C labeling each node with a
constraint system such that

* v(vy) = {@} for the root vy € N of D, and

¢ for each non-leaf node v, there is a constraint reduction rule with

7(0) ~ {r(@) | (v,0) € £}

A leaf v is called an axiom leaf if y(v) = L (i.e., y(v) is contradictory)
and an open leaf otherwise.

Tamarin’s constraint reduction algorithm terminates when it finds
a proof, i.e., all leaves are axioms, or an attack, i.e., there exists a
leaf constraint system that is solved. Solved constraint systems I' are
sufficiently constrained to enable the extraction of a model (dg, 0) |=g
I' [111, Theorem 5]. In particular, such a constraint system contains no
node constraints with an open premise, which allows the extraction of
a dependency graph. For theories that use the subterm operator C or
reducible function symbols such as XOR, it can also terminate with
unfinishable, i.e., the result is unknown.

A constraint reduction rule of the form (2.1) is sound if no solu-
tions are lost, i.e., sols(T') C J;sols(T';), and complete if no solutions
are added, i.e., sols(T') D |J;sols(T;).> Since Tamarin’s constraint re-
duction rules are both sound and complete, a proof of ¢ implies
R = ¢ whereas a reduction sequence leading to a solved form im-
plies (dg,0) | {¢} for some dependency graph dg and valuation 6.

2 We use the proof-theoretic definitions of these terms here, whereas in [111] the former

relation is called completeness and the latter is called correctness.
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Well-Formedness Constraints

Tamarin’s constraint systems must satisfy the well-formedness con-
ditions WF1-5 presented in [111, p.99 and p.120]. Given a protocol
model (R, E), these conditions can be summarized as follows:

wrF1. All node constraints in I' are instances of a multiset rewrite rule
from R,

wr2. All premise constraints f >, i € I' correctly refer to a premise
of a node constraint in T,

wr3. All edge constraints (c — p) € T connect the conclusion c¢
of some node instance in I' to the premise p of another node
instance in T,

wF4. All subformulas V¥.w of any trace formula ¢ € I are of the
form w = f@i = ¢ such that set(X) C fo(f@i).

wF5. All chain constraints (c --+ p) € T connect the 'K+ conclusion ¢
of some node instance in T to the !K¥ premise p of another node
instance in I'.

By inspection of the constraint reduction rules Sy and S5 for
quantifiers, it is easy to see that WF4 can be strengthened to

wF4’. All formulas ¢ € I' are guarded trace formulas.
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LONG-TERM KEY AUTHENTICATION

There is no secure communication without long-term key authenti-
cation. Many systems aiming to provide authentic long-term keys,
however, relied on trust assumptions that were shown to often not
hold in practice. As a consequence, alternative approaches were sug-
gested. In this part of the thesis we will present, use, and formalize
such approaches. To start, we present a formal notion of authentication
and show how it relates to long-term key authentication (Section 3.1).
We then sketch the two alternative approaches: social authentication
(Section 3.2) and accountability (Section 3.3).

In later chapters, we present two novel systems that follow each
of these approaches and provide provable social authentication and
accountability guarantees. We present SOAP, a SOcial Authentica-
tion Protocol, which provides social authentication, in Chapter 4 and
ADEM, an Authentic Digital EMblem, which provides authentication
using an accountability mechanism, in Chapter 5.

3.1 TRUE LONG-TERM KEY AUTHENTICATION

We formalize long-term key authentication by instantiating agreement
properties as defined by Lowe. Lowe famously introduced a “A Hier-
archy of Authentication Specifications” [107], in which he defines five,
increasingly strong authentication properties that aim to capture var-
ious notions of authentication. Of these five properties, we introduce
non-injective agreement and injective agreement. Both properties guaran-
tee that when a protocol P was run between two parties A and B, both
parties agree on their view of that run. In particular, they agree to have
run P with each other and they agree on a set of data items ds that
were exchanged while running P. The properties differ in that injective
agreement requires a one-to-one (injective) mapping from sessions of
A to sessions of B, which formalizes that P provides replay protection.
Following Lowe, we slightly recast both properties as follows.

Security Property (Non-injective agreement; adapted from [107]). A
protocol guarantees an initiator A non-injective agreement if whenever
A receives a message with data items ds, apparently from responder
B, then B was previously running the protocol as the responder, and
the two agents agree on the values of ds.

Security Property (Injective agreement; adapted from [107]). A proto-
col guarantees an initiator A injective agreement if whenever A receives
a message with data items ds, apparently from responder B, then B
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was previously running the protocol as the responder, and the two
agents agree on the values of ds, and each run of A corresponds to a
unique run of B.

In contrast to the definitions above, [107] also requires that A and
B agree on the intended recipient (A), which we drop so that we can
also consider only sender-authenticated protocols. Most protocols
that provide agreement as defined above and run between two parties
provide agreement on both participants A and B and in both directions,
i.e., in the stronger sense. However, long-term key authentication
typically does not require receiver-authentication as identity to public
key bindings are public.”

We formalize long-term key authentication as an agreement prop-
erty. A protocol P provides long-term key authentication for a respon-
der B to an initiator A if (i) the data items ds encode B’s public key,
and (ii) for all runs between two honest parties A and B, P guaran-
tees A agreement. To illustrate this, we sketch how a long-term key
authentication protocol provided by all modern secure messengers
provides injective agreement.

All modern messengers, including Facebook Messenger [42], iMes-
sage [158], Signal [119], Telegram [155], Threema [164], Viber [160],
and WhatsApp [4], offer their users to compare safety numbers with
their chat partners, which is called an authentication ceremony. Safety
numbers are fingerprints of the two conversation participants’ public
keys. To compare safety numbers in Signal’s Android app, for exam-
ple, users can use the safety number verification menu, which displays
the safety number as a QR code and numerically. Users can compare
safety numbers either by scanning each other’s QR codes in-person
or by relying on a different, trusted out-of-band channel. If two chat
partners’ safety numbers match, they are using the same public keys,
and as they rely on a trusted channel such as in-person comparison,
they know that they use each other’s authentic public keys. The Signal
app provides a button to mark contacts as verified whenever safety
number comparison was successful.

One can consider the in-person comparison of safety numbers as a
protocol with the following steps:

1. A (the initiator) opens the safety number verification menu on
their device and asks B (the responder) to do the same.

2. By opening the menu, B “sends” A their view on each other’s
long-term keys, visually encoded in the QR code. Here, the
data items ds contain A’s and B’s safety number and, hence, B’s
public key.

! Identity to public key bindings are typically public for the purposes of authentication.
For privacy reasons, one may want to share one’s public key selectively, but receivers
would not need to authenticate such mechanisms.

34



3.2 KEY AUTHENTICATION USING SOCIAL AUTHENTICATION

3. A “receives” B’s message by scanning their QR code. If the
comparison performed by the app is successful, A marks B as
verified in their application.

It is easy to see that the above protocol provides injective agreement
and thus long-term key authentication. The safety number comparison
provides agreement, and the fact that it happens physically assures
that the agreement is injective. One cannot replay physical actions.
Moreover, the in-person comparison of safety numbers provides partic-
ularly strong long-term key authentication as it relies on minimal trust
assumptions. Its limitations, however, should be apparent. Meeting in
person is a high bar, and it does not apply to many other use cases.

3.2 KEY AUTHENTICATION USING SOCIAL AUTHENTICATION

The first alternative approach to true long-term key authentication is
to use social authentication. The idea of social authentication is for a
verifier to authenticate a prover’s long-term key using one or more
digital identities at IdPs. Instead of verifying that one truly commu-
nicates with the intended peer, one verifies that the peer controls a
number of digital identities. This idea was pioneered by Keybase [86]
in context of secure messaging. Keybase allows its users to bind their
social media accounts, e.g., at Twitter, to their Keybase account using
so-called proofs [87]. Users do this by posting a signed message on a
social media platform. Other users can verify that a user linked their
accounts by checking that the signature was generated using the key
associated with the Keybase account and posted by the claimed social
media account.

Later, [159] coined the term “social authentication,” proposed its
application to Signal, and conducted a user study using a mock-up
prototype. The authors found that users regard social authentication
as understandable, easy to use, working asynchronously and remotely
(in contrast to, e.g., in-person verification), and that it enhances their
security when using multiple providers. However, users gave social
authentication a lower trust score than in-person verification, partially
stemming from their limited understanding of the mechanism. For
example, users feared that a compromise of their social media accounts
could lead to a compromise of their Signal account, and they distrusted
social media providers in general. Users also mentioned the risk of
social engineering with fake accounts.

Social authentication is appealing as: (i) many users have pre-exist-
ing relationships on social media, and (ii) by linking their social media
presence to a different account, they can transfer the relationship from
one medium to another. Note that these two notions are independent:
even if you have no relationship with a given social media account,
you could still be convinced that you are talking to the account holder.
Moreover, social authentication allows for authentication in useful
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ways, that are impossible using conventional solutions, which we
explicate in two further use cases.

SOCIAL AUTHENTICATION AS A SECOND FACTOR One may ques-
tion the value of social authentication whenever users cannot
authenticate their chat partner’s identities because they have no
relationship to these identities. For example, someone who has
never received an e-mail from a given Outlook address would
be unable to verify that e-mail address as truly belonging to the
person in question without further interaction.

In such cases, social authentication is still valuable as it can serve
as a second factor, raising the bar for compromise. If one of your
contacts authenticated themselves as in control of two accounts,
and you are prompted that this contact’s public key changed,
you can check whether the “new” contact still controls both these
accounts. This information can help to distinguish a public key
maliciously associated to your contact’s profile from a legitimate,
fresh public key after key-rollover.

NATIVE DIGITAL AUTHENTICATION For some online interactions,
users do not base the identification of their chat partners in the
physical world, but rather in the digital world. For example, in
the physical world, I might like to authenticate my chat partner as
“my colleague Alice, who I eat lunch with every day.” In contrast,
in the digital world, I might like to authenticate my chat partner as
“the open-source maintainer Alice123 on GitHub, who I have never
met in real life but writes beautiful JavaScript.” In the latter case,
social authentication promises to seamlessly bootstrap a secure
communication channel from such a pre-existing relationship.

So far, however, social authentication has never been studied for-
mally. It has never been properly defined, e.g., as a trace property, and
as a consequence, it has never been studied whether a design promis-
ing social authentication actually provides it. In Chapter 4, we fill this
gap. We formally define social authentication and present SOAP, a
SOcial Authentication Protocol, which provably social authentication.

3.3 KEY AUTHENTICATION USING ACCOUNTABILITY

The second alternative approach to true long-term key authentication
is to use an accountability mechanism. Protocols providing account-
ability do not (generally) prevent attacks but allow one to identify
and punish participants that do not follow the protocol. Utilizing
accountability mechanisms to provide long-term key authentication
was proposed in transparency systems. In transparency systems, log
operators maintain publicly verifiable logs, which are authenticated
data structures that commit to the identity-to-key bindings attested
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to by providers, and identity-to-key bindings only become valid when
they are included in one or more logs.

In context of the Web PKI, Certificate Transparency (CT) [96, 97,
149] holds CAs accountable. In context of secure messaging, key
transparency systems hold messaging providers accountable (see, for
example, [41, 99, 100, 108, 113, 165]), and both iMessage [1] and Whats-
App [101] provide key transparency services. Different transparency
systems specify different security and operational details. CT, for
example, specifies that certificates must be included in at least two
logs from different log operators, whereas key transparency logs are
typically operated by the messaging provider itself. Some designs
require third-party auditors that monitor log providers to maintain
certain invariant, such as providing an append-only authenticated
data structure. They all require, though, that parties controlling a
given pseudonym monitor the log for the public keys bound to their
identity, and take action should a provider ever lie about their pub-
lic key. Only this monitoring enables holding providers accountable
should they ever lie about identity-to-key bindings.

In Chapter 5, we present how accountability mechanisms, such as
provided by the systems above, can solve a unique and novel problem
that arises in times of armed conflict. ADEM, an Authentic Digital
EMblem, is a system for digital emblems that mark digital infrastructure
as protected under international humanitarian law (IHL), just like the
physical emblems of the Red Cross, Red Crystal, and Red Crescent
mark physical infrastructure as protected. During armed conflict, all
these markings signal that the respectively marked assets enjoy special
protection under IHL and thus should not be attacked.

Digital emblems have unique security requirements. First, digital
emblems must be authentic. Digital assets must not be able to illegit-
imately signal protection, for example, by moving legitimate digital
emblems to different contexts. Second, digital emblems must provide
the novel security requirement covert inspection. Covert inspection
requires that those inspecting digital emblems must not reveal them-
selves as such. As digital emblems are signs to stop attacks, those
looking for them likely intend to attack unmarked assets, and would
never want to signal this fact.

As the protection signalled by digital emblems is codified in IHL,
digital emblems must fit into the existing framework of IHL. Crit-
ically, IHL requires that digital emblems cannot have one or more
designated “root authorities,” which could attest to the authenticity
of digital emblems. Put as a requirement, the mechanism providing
digital emblems with authenticity must be decentralized. We thus
specify an accountability mechanism to provide digital emblems with
authentication, both inspired by and using existing transparency sys-
tems. In Chapter 5, we present ADEM, and we formally express both
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ADEM'’s authentication and accountability guarantees and formally
prove that ADEM provides them.



SOAP: A SOCIAL AUTHENTICATION PROTOCOL

4.1 INTRODUCTION

Most messengers allow their users to communicate without authenti-
cating their chat partners. When users opt to do that, they rely on the
application’s key server correctly distributing public keys and on the
authentication performed by the application provider during registra-
tion, which typically only requires to complete an SMS OTP challenge.
Thus, using SMS-based attacks like SIM swaps [84], an adversary can
impersonate users, and by compromising a key server an adversary
can eavesdrop on users as a Meddler-in-the-Middle (MITM). Users
must anyway trust their messaging provider to correctly implement
the promised end-to-end encryption, but the default security policies
force them to also trust that their providers” key servers are never com-
promised by insiders, attackers, or force by government authorities.

In this chapter, we present SOAP, a SOcial Authentication Proto-
col, that allows users to seamlessly and socially authenticate each
other, and propose its application to secure messenger. We make the
following contributions:

* We precisely define the security objectives of social authentica-
tion and argue that it should provide a novel security property
that we call sender correspondence. This is a strong security prop-
erty in that messaging sessions can only be compromised if all
digital identities and the application’s key servers are compro-
mised. This raises the bar for the adversary and distributes trust
among many providers. In contrast to most messengers” default
security, neither the cellular provider nor the key servers can
individually intercept messaging sessions.

Sender correspondence fills the gap left by previous works [28,
86, 159] on social authentication, which never formalized social
authentication as a security property, let alone studied whether
a proposed design actually provides it.

¢ We formally relate sender correspondence to existing notions of
authentication, and show how sender correspondence applies to
systems beyond secure messaging.

¢ We present SOAP, a secure and practical protocol implementing
social authentication. SOAP automates the authentication cere-
mony and provides a straightforward and immediate means for
adoption. Figure 4.1 provides an overview of our design.
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Your chat partner shared their identity.
They are also:
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Figure 4.1: SOAP implements a social authentication ceremony. A user
initiates the ceremony in their messaging application, which requests an
identity token for each of the user’s identities and forwards the tokens.
The verifier’s application verifies the token’s sender. The verifier uses the
identities to authenticate the user.

¢ Using Tamarin, we formally prove that SOAP satisfies our novel
security property and that SOAP respects user privacy. Users can
decide to whom they disclose which identities, and SOAP leaks
no information to IdPs beyond that one is using the messag-
ing app in question, e.g., Signal. By employing a salt-and-hash
scheme, we avoid revealing key material to IdPs and, thus, leak-
ing one’s contacts to providers.

* We show that SOAP is straightforward to adopt by implement-
ing it in two fully functional prototypes: a web-based application
and an extension of the Signal Android application. The for-
mer requires some user interaction whereas the latter functions
mostly automatically.

SOAP is the first formally verified authentication ceremony for
messaging applications that works remotely. SOAP does not require
users to work with cryptographic objects like keys or fingerprints, and
subsequent work studying SOAP’s usability found that this design
can indeed enhance user security [76]. By leveraging an existing and
widely used standard, SOAP is easy to implement and can be used
immediately with any IdP that already supports OpenlD Connect,
which we demonstrate with two functional prototypes.

OUTLINE We proceed as follows. We formally define social authen-
tication by instantiating a more general property which we call sender
correspondence (Section 4.2). In that section, we also contextualize
sender correspondence by showing how it applies beyond social au-
thentication and how it relates to other notions of authentication. We
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Figure 4.2: Social authentication establishes for a verifier that the digital
identity ID and messaging application public key PK are controlled by the
same person.

then present SOAP’s design goals and design (Section 4.3). After-
wards, we formally prove SOAP’s security (Section 4.4) and present
prototypes (Section 4.5). We close by comparing SOAP to related work
(Section 4.6) and drawing conclusions (Section 4.7).

4.2 SOCIAL AUTHENTICATION FORMALLY

In this section, we formalize the intuition of social authentication as
presented in Section 3.2. We begin by defining the security property
sender correspondence which can be instantiated as social authentication.
Later in our related work section (Section 4.6), we show that sender
correspondence finds application beyond secure messaging, and we
relate it to existing, formal notions of authentication.

Security Property (Sender correspondence). A protocol P guarantees
a verifier sender correspondence between two pseudonyms A and B if,
whenever P successfully terminates, then all messages that appear to
have been sent by A and all messages that appear to have been sent
by B were sent by the same user.

Social authentication is an instantiation of sender correspondence,
where the pseudonym A is the messaging application public key PK
and B is an IdP-controlled digital identity ID. We define sender corre-
spondence in more general terms than social authentication because
sender correspondence finds application in other protocols (see Sec-
tion 4.6). We illustrate social authentication’s security guarantees in
Figure 4.2.

4.3 PROTOCOL DESIGN

In this section, we present SOAP’s design in detail, which utilizes the
OpenlD Connect protocol [135, 136] to facilitate adoption. We start
by stating its design goals, threat model, and design idea informally.
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We then proceed to introduce the OpenID Connect protocol [135, 136],
and finally present SOAP itself.

4.3.1  Design Goals

Naturally, SOAP was primarily designed to provide social authentica-
tion as defined in Section 4.2. Beyond that, SOAP was also designed
to provide privacy. For example, IdPs cannot learn with whom their
users communicate. We define SOAP’s privacy property in terms of
the allowed leakage to an IdP. In particular, IdPs neither learn who
the prover authenticates to nor which other IdPs the prover uses. IdPs
should only be able to learn that SOAP users (i) use SOAP, (ii) the
messaging applications where they use it, and (iii) when they use it.

4.3.2  Threat Model

SOAP was designed to provide its security properties against two
kinds of adversaries: We establish social authentication against an
active network adversary and privacy against a malicious IdP. Whereas
the social authentication adversary is an active network adversary
in that it can read, intercept, reorder, and replay all messages, the
malicious IdP can do the same but only with messages sent to it
directly. For example, the malicious IdP cannot observe whether the
prover forwards tokens to the verifier. We restrict our analysis of
SOAP’s privacy property to a malicious IdP as we wish to show that
adding IdPs to the messaging application ecosystem does not threaten
user privacy.

Our threat model permits the compromise of the messaging appli-
cation’s key server, the leaking of OpenID Connect requests to IdPs,
and the compromise of some of the IdPs integrated into the messaging
application. Notably, we make no assumptions on user-behavior other
than that users do not leak their credentials. Users click any link sent
to them by the adversary, whenever an IdP asks them for consent, they
provide it, and whenever an IdP asks them to log in, they do so, even
if the adversary triggered that query. We only limit our adversaries’
capabilities in the following ways:

1. Adversaries are bound by the security properties of the crypto-
graphic primitives used and the TLS and messaging application’s
end-to-end encryption protocols. For example, adversaries can
neither invert cryptographic hash functions nor eavesdrop on a
TLS session.

2. User credentials at IdPs are uncompromised.

3. Whenever a user authenticates via a given IdP, that IdP’s signing
keys and TLS certificates are uncompromised.
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4. The messaging application and the user’s web browser are un-
compromised. In particular, the parameters of browser redirects
to the messaging application remain confidential until they ex-
pire, and messaging application key material remains uncom-
promised.

The necessity for Assumptions 1-3 is self-evident. Regarding As-
sumption 4, it should be clear that we must require the messaging
application and the user’s browser to be uncompromised. We will
discuss why we require the parameters of browser redirects to remain
confidential later in Section 4.4.1 as this assumption requires a deeper
understanding of SOAP’s design. Finally, we require that messaging
application key material remains uncompromised because an adver-
sary could otherwise trivially impersonate the honest user controlling
that key material. SOAP was not designed to defend against key com-
promise, but rather against impersonation by associating malicious
keys with pseudonyms.

4.3.3 Design Idea

SOAP, our Social Authentication Protocol, works as follows. The
prover requests an OpenID Connect identity token from an IdP and
submits a hashed-and-salted conversation’s safety number with that
request. The identity token includes a signature by the IdP on the
safety number and one of the prover’s digital identities. At its core,
this signature enables SOAP to provide social authentication and
hashing-and-salting the safety number provides privacy. The prover
forwards the token to the verifier, whose messaging application verifies
it cryptographically and displays the prover’s identity if all checks
pass. In particular, this means that neither the verifier nor the prover
must interact with cryptographic objects such as cryptographic keys
or fingerprints thereof. In practice, users must run SOAP once per
IdP to authenticate themselves to one contact, and only need to rerun
SOAP should their long-term key material change.

We propose to run SOAP with multiple IdPs, which substantially
improves user security compared to many messengers” default security.
To the user, these multiple runs of SOAP (for multiple IdPs) will appear
as one, which will become clear when we explain our prototypes in Sec-
tion 4.5. Recall that, by default, a user’s account can be attacked under
the following condition: compromise the application’s key server or
compromise the cellular provider while the registration lock is not en-
abled (Chapter 3). Now suppose the prover runs SOAP with two IdPs.
Both protocol runs are independent and, when completed successfully,
the verifier’s app will display the prover’s identities with both IdPs.

It is now much harder to impersonate or MITM the prover: the ad-
versary must compromise all IdPs used and either the prover’s cellular
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Figure 4.3: OpenID Connect authorization code flow with PKCE. h(v) is the
commitment to a random value v as specified by PKCE and s is the state
parameter.

provider or the application’s key server. Critically, the compromise of
the application’s key server no longer suffices, and in contrast to the
registration lock, users can authenticate their chat partners and need
not rely on their chat partners activating the registration lock.

4.3.4 OpenlD Connect

OpenlD Connect [135, 136] is an authentication protocol that itself
builds on the OAuth 2.0 authorization protocol [75]. OpenID Connect
is used to implement many of the well-known “Login with Google/Mi-
crosoft/Apple/...” buttons. OpenlD Connect involves three parties: a
user, an IdP managing the user’s identity, and a relying party seeking
to authenticate the user. The OpenID Connect protocol is executed
by a client operated by the relying party. At the end of a successful
protocol run, the client receives an identity token through a browser
redirect from the IdP. The identity token is a cryptographically signed
message, proving that the IdP authenticated the respective user, and
which the client can use to identify the user. Prior to issuing requests,
relying parties must register at the respective IdP. During registration,
relying parties whitelist redirect URLs, and IdPs issue client IDs.
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OpenlD Connect supports multiple flows, which are protocol vari-
ants aiming at specific types of software clients. We use the autho-
rization code flow extended with the Proof Key for Code Exchange
(PKCE) standard [137], which is currently recommended as best prac-
tice for clients such as mobile applications [105]. The authorization
code flow with PKCE implements a commitment reveal scheme, which
we depict in Figure 4.3 and works as follows. The client first issues an
authorization request by launching the device’s browser at a specific
URL called the authorization endpoint. The request encodes various
parameters in the URL: a client ID, redirect URL, code challenge (the
commitment, which is the hash of a random string), and optionally a
state parameter and a nonce. The state parameter and nonce protect
against replay and cross-site request forgery (CSRF) attacks.

After receiving an authorization request, the IdP verifies the redi-
rect URL as whitelisted for the given client ID, authenticates the user,
and asks the user for consent. Users usually authenticate by logging
in, or through a session cookie already stored in their browser. De-
pending on the user’s history with the IdP, the user may not need to
grant consent.

Once a user consents to logging in, the IdP forwards the browser
to the redirect URL given in the request. In the redirect URL, the IdP
encodes an authorization code and the state parameter sent earlier. The
client verifies that the state matches the state it previously issued, and
exchanges the authorization code for an identity token. The client does
this by sending a POST request to the IdP’s token endpoint, including
the authorization code and the code verifier. The code verifier opens
the code challenge commitment sent earlier to the IdP. This allows the
IdP to determine that the identity token is requested from the same
client that issued the initial request.

The identity token is encoded as a JSON Web Signature (JWS),
which is a signed object that maps keys to values. Among other
values, the object includes the issuer, the audience (identifying the
client), the subject (the user who was authenticated), the nonce, and a
validity period. Usually, identity tokens are short-lived, with lifetimes
typically ranging from two minutes to two hours. According to the
OpenlID Connect specification [135], identity tokens must only be
accepted by the intended audience. This prevents a service to which a
user logged in from using the identity token with another service.

4.3.5 Protocol Description

SOAP consists of three steps for the prover (request, validation, and
forwarding) and one step for the verifier (validation), and we base
SOAP on the OpenID Connect authorization code flow with PKCE as
introduced in the previous section. Figure 4.4 sketches our protocol.
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Figure 4.4: SOAP running between the prover, the IdP, and the verifier.
Here, hs is a password hashing algorithm using a salt s and h is SHA-256 as
specified by PKCE. The application randomly samples a code verifier v, a salt
s, and nonce 7. Finally, o is the OpenlD Connect token, which is forwarded
to the verifier and includes a signature on h(k,s) and n.

To start a run of SOAP, the prover’s messaging application prepares
the request. It generates three random values: a code verifier cv, a salt
s, and a nonce n. The application then uses a secure password-hashing
algorithm to calculate a salted hash h(k, s) of the safety number k. This
hash serves to blind the safety number to the IdP. To defend against
CSREF attacks, the application stores the salted hash h(k,s), the salt s,
the nonce #n, the IdP’s ID, and the code verifier cv as the most recently
issued request. Then, the application launches the authorization code
flow with the following arguments:

scoPE: “openid email”; depending on the IdP, other scopes than
“email” may be desirable.

RESPONSE_TYPE: “code”

NoNCE: n || h(k,s); the application must ensure that it does not
include the salt. || denotes concatenation. The application must
ensure the parsing is unambiguous, e.g., by adding a delimiter
character.

STATE: n

CODE_CHALLENGE: S256(cv); S256 marks the SHA-256 hashing al-
gorithm.

CODE_CHALLENGE_METHOD: “5256”
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Naturally, the application also includes its IdP-issued application
ID, and an appropriate redirect URL. Redirect URLs must use the
HTTPS scheme and must be distinct per IdP. Then, the application
launches the system’s browser with the request URL, which in turn
takes the user to the consent and login page.

If the prover consents, the IdP redirects the browser back to the
application. The redirect passes the application a state parameter and
an authorization code, which can be exchanged for an identity token.
Before the application uses the authorization code, it must verify that
the state value it just received equals the nonce stored with the most
recently issued request, and that the response originates from the
expected IdP.

If both checks pass, the application uses the authorization code
and stored code verifier to request the identity token from the IdP.
It verifies the token’s signature and that (i) the issuer matches the
redirect URL stored, (ii) the token’s audience matches the application
ID, (iii) the token’s nonce includes the hash stored, and (iv) the token
has not expired. Finally, the application clears its storage for the
most recently issued request, and stores the nonce in a replay cache.
Recording nonces defends against reflection attacks; the description
of our web-based prototype in Section 4.5.1 illustrates this threat.

The application forwards the identity token and the salt to the
verifier and the verifier verifies the token’s signature and that it has
not expired. Additionally, the verifier verifies that the safety number
encoded in the identity token encodes the prover’s and verifier’s keys,
and that it did not request this token itself by looking up the stored
nonces from runs where it was the prover. If these checks pass, the
verifier can obtain the sender’s identity from the token.

While Figure 4.4 may suggest that SOAP simply “calls OpenlD
Connect,” previous work [65, 67, 105] highlighted many subtleties in
implementing an OpenlD Connect-based protocol securely. Hence,
we next present our formal proof that SOAP indeed provides social
authentication.

4.4 SECURITY ANALYSIS
SOAP is designed to implement social authentication and to protect

user privacy, as introduced in the previous section and Section 4.2. In
the following, we prove its security using Tamarin.

4.4.1  Social Authentication

We next provide high-level intuition on why SOAP provides social
authentication and then describe our formal proof.
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Informal Analysis

We previously defined social authentication as an implication: “If the
verifier associates an account A with the public key PK and received
a message from each of these pseudonyms, then these messages were
sent by the same party.”

There are two ways to violate social authentication. Either, there is
no send event for one of the messages, or the send events have differ-
ent senders. In our formal model, we modeled the message-exchange
channels as authentic (i.e., given a receive event, there will be a send
event) and thus focus on the latter case. Given SOAP’s design, the
attacker can achieve this by either making the prover send a malicious
token through the messaging application, linking an attacker-chosen
account to the prover’s messaging channel (identity substitution), or
making the prover authenticate in an attacker-controlled OpenID Con-
nect flow, linking the prover’s account to an attacker-chosen channel
(impersonation).

Let us first focus on impersonation attacks, and presume Eve
attempts to attack Alice. This means that Eve has a messaging session
with Alice and wants to convince Alice that she, Eve, controls one
or more of Bob’s accounts at IdPs. To achieve this, Eve must send a
token that includes a reference to Bob’s account and the safety number
of Eve’s and Alice’s public keys. As we assume that Bob’s account
is uncompromised (Assumption 2, Section 4.3.2), Eve must craft a
malicious OpenID Connect request and forward it to Bob. This is
straightforward as it requires nothing more than convincing Bob to
click on a malicious link encoding such a request. However, Eve
cannot obtain a token from this: Bob’s application will discard the
authorization response if it did not issue the request itself. Moreover,
if it did issue the request itself, it would include one of Bob’s safety
number and not Alice and Eve’s.

Similarly, Eve cannot launch an identity substitution attack. Eve
would need to run SOAP herself, using a victim’s safety number as
parameter, log in with her own account, and then make the victim’s
application accept the resulting browser forward. However, the ap-
plication would again discard that forward as it did not issue the
corresponding request.

This argument spells out the main idea behind SOAP’s security.
In reality, the security of protocols based on OAuth 2.0 and OpenID
Connect is much more subtle. Attackers can in general access au-
thorization code responses through other means than capturing the
redirects. For example, [65] first described the IdP-mixup attack, in
which applications leak an authorization code by sending it to the
wrong IdP. Therefore, we formally evaluate SOAP’s security next.
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Figure 4.5: Sketch of our formal model of SOAP. Arrows indicate message
exchanges, denoted with the respective channels used. Dashed arrows
indicate that the adversary can initiate the respective request on the user’s
behalf. We omit the IdP-controlled bulletin board and the messaging channel.

All v sendKey rcvKey ml idp acc m2 #t #rl #r2.
( Correspond(v, sendKey, idp, acc) @ #t
& ReceiveMessaging(sendKey, rcvKey, ml) @ #rl
& ReceivelIdP(idp, acc, m2) @ #r2)
( (Ex s #x1 #x2. SendMessaging(sendKey, rcvKey, ml) @ #x1
& Sender(s) @ #x1 & #x1 < #rl
& SendIdP(idp, acc, m2) @ #x2
& Sender(s) @ #x2 & #x2 < #r2)
(Ex p #x. CompromisedAccount(p, idp, acc) @ #x)
(Ex #x. CompromisedIdP(idp) @ #x)
(Ex #x. CompromisedDomain(idp) @ #x)
(Ex app redirectURL #x #y #z.
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Figure 4.6: Formalization of social authentication (Section 4.2), also encoding
the threat model (Section 4.3.2). Note that the two Sender facts are bound to
the respective SendMessaging and SendIdP events, as they occur at the same
time points (x1 and x2).
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Formal Proofs

Our formal model comprehensively captures SOAP and its heteroge-
neous environment. Beyond the messaging application and TLS, we
modeled all security-critical aspects and auxiliary protocols such as
public key requests and distribution. Figure 4.5 depicts a sketch of
what we modeled. Our model permits arbitrarily many participants
to communicate with each other in arbitrarily many parallel proto-
col sessions. The adversary can corrupt any party in a fine-grained
manner, e.g., a user’s account could be compromised independently
of their messaging long-term keys, only constrained by our security
assumptions from Section 4.3.2. For example, IdP corruption is pos-
sible for every IdP except the one with which the prover intends to
authenticate themselves.

More specifically, our model includes channels for SMS, TLS,
browser redirects, and messaging applications with different secu-
rity properties and distinct keys. We also modeled communication
associated with IdP-controlled pseudonyms (usernames) as a bulletin
board where users can post messages associated with their pseudonym
publicly after the IdP authenticates them using a password. We mod-
eled SMSes as insecure and the messaging application’s encryption
protocol as secure (confidential and authentic). We modeled TLS as
a secure channel without client authentication, i.e., the adversary can
always initiate new sessions with servers.

The adversary can compromise any TLS server, which allows it to
read client queries and respond to them. TLS queries can have one of
two methods, GET and POST, whereby GET requests can be initiated
by the adversary on a user’s behalf, modeling that the adversary can
trick users into clicking any link. In practice, this allows the adversary
to launch the OpenID Connect protocol at various points (e.g., initial
request and code forwarding) for non-compromised clients. Browser
redirects are modeled as GET requests using an existing session to
connect to a new server, initiated by the previous server. This allows
us to model, e.g., the redirect to a mobile application by modeling that
application as a server.

We modeled the messaging provider, messaging application, end
users, and IdPs as different parties. Our model includes SOAP itself,
messaging application registration (including SMS OTP verification),
IdP account registration, as well as messaging key server and IdP pub-
lic key requests and responses. Moreover, we fully modeled OpenlID
Connect and we make no assumptions on this protocol’s security.

Within this model, we prove that SOAP implements social authen-
tication. Figure 4.6 shows our Tamarin specification formalizing social
authentication as a trace property. It has three parts. Lines 2-8 formal-
ize social authentication: If the verifier associates two pseudonyms
with each other (Correspond), then all messages received from those
two pseudonyms (ReceiveMessaging and ReceiveIdP) originate from
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the same sender. We formalize the latter by showing that there exist
two send events (SendMessaging and SendIdP) for which the sender
(Sender) is the same party s.

Lines 9-16 formalize Assumptions 2-4 from our threat model (Sec-
tion 4.3.2). Assumption 1 is covered implicitly as Tamarin operates in
the symbolic model. There is just one subtle difference from social au-
thentication as presented earlier. Namely, since the messaging channel
is not just sender-authenticated, but also receiver-authenticated, we
can include the recipient’s pseudonym rcvKey in the receive and send
event in lines 3 and 5. This means that our formalization of social
authentication is stronger than sender correspondence.

The size and complexity of our model put its security properties
out of reach for fully automated verification. For example, modeling
that browser redirects remain confidential until they expire (Assump-
tion 4) proved to be challenging. In part, we modeled this assumption
by revealing authorization codes to the adversary after receiving the
respective identity token. This led to infinite looping in Tamarin’s
proof construction, which we avoided by proving an inductive, auxil-
iary lemma showing that authorization codes can only be used once.
In total, we verified nine auxiliary lemmas and programmed custom
proof heuristics to aid Tamarin’s proof construction.

Discussion

With our formal analysis of the authentication property completed, we
briefly return to Assumption 4 of our threat model, where we require
that the parameters of browser redirects to the messaging application
remain confidential. Without this assumption, the adversary could
easily obtain an identity token that binds an attacker-chosen safety
number to a victim’s account. To achieve this, they would only need
to trick their victim into clicking a SOAP-request link that includes a
malicious safety number as parameter. As soon as the victim logs in
and consents (which they will do under our liberal threat model), the
adversary could learn the authorization code from the redirect URL
and request the identity token themselves.

Users can theoretically protect themselves from this attack by only
granting consent to requests they initiated themselves. However, (i) we
find it unrealistic to assume users are resistant to social engineering,
and (ii) we experienced during our prototype development that some
IdPs immediately acknowledge requests without user involvement
whenever the user was already logged in and had previously granted
consent. In this case, users could be attacked easily, e.g., with malicious
URLs obfuscated with a URL shortener.

In practice, though, capturing redirects requires the adversary to
have access to a user’s browsing history while an attack is launched.
This requires the compromise of the user’s browser, or the installation
of a malicious application handler on the user’s device. In case of
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a compromised browser, it is nigh impossible to protect the user’s
account credentials at the same time. To address malicious applica-
tion handlers, we recommend that the application should use HTTPS
redirect URLs as described in Section 4.3. With HTTPS URLs, applica-
tion developers can utilize the security features provided by modern
operating systems to ensure that authorization codes do not leak. For
example, both Windows and Android support applications to handle
HTTPS URLs, but only as long as these applications have been dele-
gated to do so by the respective URL [61, 74]. This way, application
developers can rely on the security features provided by the Web PKI
to protect authorization responses. Without HTTPS URLs, an attacker
would still need to install a malicious application handler and in turn
a malicious application on their victim’s device to capture redirects to
custom schemes.

4.4.2  Privacy

SOAP protects users’ privacy against the IdPs in that it only reveals
that a prover is using SOAP, which messaging application is being
used, and at what times SOAP is used. We formally proved SOAP’s
privacy as an observational equivalence property using Tamarin. Im-
plementing our threat model (Section 4.3.2), we proved privacy in a
simplified model (compared to the model presented in the previous
section) that only includes communication between users and the IdP.
We modeled the malicious IdP as the adversary and consequently
replaced TLS with an insecure channel. Our observational equivalence
property shows that IdPs cannot distinguish protocol runs where
a user submits the correct salted-and-hashed prover/verifier safety
number from runs where the user submits a different safety number.
In the symbolic model, our privacy property is straightforward as we
will lay out next.

SOAP only includes two requests to the IdP’s servers, and these
requests include the following parameters: the messaging application
ID with the IdP, a redirect URL, a nonce, the code challenge (the
hashed code verifier), the code verifier, the authorization code, and the
salted-and-hashed safety number. The messaging application’s ID and
redirect URL reveal the messaging application and that the prover is
using SOAP. The nonce, the code challenge, and the code verifier are
randomly generated values that change with every request, and hence,
leak nothing about the prover. The authorization code is issued by the
IdP and therefore allows the IdP to connect the initial authorization
request with the token request. Finally, the salted-and-hashed safety
number leaks nothing about the prover under the assumption that the
IdP cannot break cryptographic primitives such as salt-and-hashing,
and because the salt is only shared with the verifier.
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In theory, a verifier could share the salt with an IdP to reveal that
the prover intended to communicate with the verifier. However, a
verifier could leak this information even without SOAP. The IdP could
also attempt to correlate public key requests with issued tokens. Fetch-
ing public keys, however, is not part of SOAP itself as applications
will likely cache public keys. Additionally, the OpenID Connect speci-
tication [136] requires that IdPs distribute their public keys publicly
and application-independently via HTTPS. For both of these reasons,
we deem such a correlation to be practically infeasible. To summarize:
SOAP prevents the surveillance by an IdP of its user’s contact graphs
in messaging applications.

4.5 PROTOTYPES

We implemented SOAP in two prototypes: as a stand-alone web appli-
cation' and as a fork of the Signal open-source Android application.
Both prototypes support GitLab and Microsoft as IdPs. The stand-
alone version does not require messaging application adoption but
requires more user interaction. In its current design, it can be used to
associate arbitrary statements to a user’s account.

Our prototypes demonstrate that social authentication can be re-
alized practically, with provable security guarantees, and without
OpenID Connect-IdP adoption. Our web-based prototype shows that
social authentication can be implemented even without messaging ap-
plication adoption. Library support for OpenID Connect is abundant
and, hence, adoption is straightforward. One of the authors could
implement an initial prototype within a day. With just a few clicks
and in a couple of seconds, users can verifiably share their identity.

4.5.1  Web-based Prototype

Figure 4.7 depicts the interaction with our web-based prototype. When
started, the application renders a text input and a list of IdPs to select
from (Figure 4.7a). After the prover selects an IdP, the application
assumes that the input contains the safety number to authenticate,
and initiates SOAP. After they complete the OpenID Connect flow
(see Section 4.3.4), the prover is forwarded to our application, which
requests the identity token (Figure 4.7b). The web application verifies
the identity token, and, if all checks pass, displays a success message.
The prover can then copy a link to send to their chat partners.

This link encodes the identity token and everything needed to
verify it. When the verifier clicks the link, the application verifies the
token, and if all checks pass, displays the prover’s identity, the IdP,
and the safety number. The verifier can copy this safety number to

' The prototype is hosted at https://soap-proto.net.
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SOAP - Web-based Prototype

This page provides an early prototype to verify that you control
an account.

Paste fingerprint

52601 88711 82717 23891
52864 65108 61537 83568
24453 40274 17374 79553

REQUEST TOKEN FROM GITLAB
REQUEST TOKEN FROM MICROSOFT

SOAP - Web-based Prototype

Success! You can forward this token to your chat partner.

https://soap-proto.net/verify?alg=2a&fp=52601+8871... m

(a) Prover pastes safety number into the
application and selects one of two IdPs.

(b) Prover receives identity token and is
presented a URL to forward to their chat
partner.

SOAP - Web-based Prototype

@ User soap-alice@outlook.com verified their identity to
you using Microsoft. This is their key fingerprint:
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SOAP - Web-based Prototype

@ User soap-alice@outlook.com verified their identity to
you using Microsoft. This is their key fingerprint:

You are viewing your own request!
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(c) Verifier sees the prover’s identity and
safety number when clicking the link.

(d) Prover sees a warning when clicking a
link generated within the same browser.

Figure 4.7: Screenshots depicting the web application prototype. The prover

must initiate this flow for each IdP.
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their clipboard. The Signal Android application offers its users to
compare the safety number with the clipboard, giving the verifier an
easy way to check the safety number (see Section 3.1).

Note that the application will render a success message to any-
one clicking a link containing an identity token. Only the user can
determine whether the safety numbers match. This allows for social
engineering attacks whenever users click links they earlier forwarded
themselves. To mitigate this threat, the web application warns users
that they issued this request themselves whenever they click a link
that was issued within the same browser. Figure 4.7d shows the view
after clicking on a URL that encodes an identity token.

4.5.2  Signal Prototype

Our Signal prototype, depicted in Figure 4.8, provides a more stream-
lined experience compared to the web-based prototype.” In particular,
the Signal prototype requires significantly less interaction from the
prover and no interaction from the verifier. Users need not actively
examine and insert safety numbers, and flows need not be initiated
for each IdP.

When a user wishes to authenticate themselves to their chat partner
(becoming a prover), they must first select the new “Authenticate”
option within the attachment menu. Next, the prover selects all
the IdPs they wish to authenticate themselves with (Figure 4.8a).
When they press continue, they will run SOAP for each of the IdPs.
The application verifies all tokens and displays a distinctly styled
message to both the prover and verifier that shows the shared identities
(Figure 4.8b, 4.8¢).

Our Signal prototype demonstrates that SOAP is a practical design
that requires little user interaction. While it is adequate for a proof-
of-concept, we suggest further enhancements before it is deployed in
production. First, previously performed social authentications should
be recorded as such in the application. The application could display
a contact’s identities within the chat header, rather than mark them
as “Verified.” This would additionally highlight that our proposal
is intended to augment in-person safety number comparison, not
supersede it. Second, the messaging application could compare the
identities provided through SOAP with identities linked to the con-
tact’s address book entry on the smartphone to automatically combat
impersonation attacks. Messaging applications are usually granted
access to address books anyways, providing a straightforward means
to automate social authentication further.

A video demo of the Signal prototype can be viewed at https://youtu.be/Ip_
RAF8PRIrM.
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Figure 4.8: Screenshots depicting the Signal prototype. The interaction with
our prototype is depicted from left to right.

4.5.3 Development

The web-based prototype was written as a single-page JavaScript
application in React [125], i.e., all code runs in the user’s browser.
The prototype consists of roughly 500 lines of code and the first ver-
sion was developed within a day by one person. In contrast to the
web-based prototype, the Signal prototype’s development was more
involved and required around three person weeks. Understanding the
poorly documented Signal Android codebase demanded most of the
time. We changed 21 files and added around 1000 lines of Java and
Kotlin code for the application logic, and also changed 17 files with
around 200 additional lines of code for configuration changes, like
layout and localization.

During prototype development, we noticed that not all IdPs sup-
port OpenID Connect ideally for our use case. Microsoft, for example,
does not support HTTPS redirect URLs for Android applications. We
tried working around this restriction by registering our Android appli-
cation as a Single-Page Application, which permitted us to configure
an HTTPS redirect URL. However, requesting the identity token failed
as cross-origin request headers were missing.

GitLab supports HTTPS redirects and does not distinguish the
types of applications upon registration. However, GitLab does not
ask for consent again after the user consented once to log in. This
causes HTTPS redirects to Android applications to fail. A Chrome
policy requires user interaction in order to redirect users to Android
applications through HTTPS URLs [9]. This left us with using custom
schemes, e.g., auth://, in redirect URLs to support GitLab as an IdP.

Finally, Google neither allows one to configure a redirect URL
nor lists a redirect URL when registering Android applications as
an OpenlD Connect client. In this way, Google hides their OpenID
Connect API. We suspect this practice is intended to force developers
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to implement “Sign-In with Google” using Google’s SDK [150]. This
SDK need not be configured with a redirect URL to request identity
tokens and does not allow one to specify a nonce.

These findings suggest that while SOAP does not require adapting
the OpenlD Connect specification, explicating our use case in the
OpenlID Connect specification could still benefit users and developers.
Currently, users will only consent to log in, and developers have to
use the nonce field outside its specified intent. If OpenID Connect
were to recognize user-submitted claims as a request parameter, users
could grant consent to show that they control the given account and
developers could use APIs supporting user-submitted claims.

4.5.4 Performance

The performance of both prototypes is mainly constrained by the
page load times of OpenID Connect authorization endpoints, consent
screens, and HTTP redirects. We timed the prototypes with a user
that was logged in and had authorized our application already. In
the web-based prototype, running SOAP for a single IdP was nearly
instantaneous (<1 second), and in the Signal prototype, running SOAP
for two IdPs consistently took less than 10 seconds.

As we described in Section 4.3, SOAP requires local, persistent
storage to protect against replay and CSRF attacks. SOAP stores the
latest issued request, which only requires a small, constant amount of
space, and the nonces generated by the application. The number of
nonces stored is limited by the number of SOAP sessions initiated by
the user, and the nonces can be discarded after a token expires, which
in our experience happens within two hours.

4.6 RELATED WORK
4.6.1  Long-Term Key Authentication

Already without social authentication, messaging users can defend
themselves against impersonation or MITM attacks. As we explained
in Section 3.1, all modern messengers support authentication cer-
emonies in which users compare safety numbers with their chat
partners. Although these authentication ceremonies provide strong
security guarantees, their actual benefit is questionable.

Various studies showed that users are unlikely to perform the
authentication ceremonies in the first place, and even if they were to
do so, they are unlikely to perform them correctly. When receiving
instructions, these numbers rise to 75%-80%. Remarkably, around
50% of [77]’s participants indicated that they would not perform the
authentication ceremony again in the future, even after its importance
was explained to them. Another study investigated the usability of
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SMS-based authentication ceremonies supported by Signal’s share
button in the safety screen’s top right corner [142]. The authors
found that in 40%-60% of the cases, a difference in safety numbers
went unnoticed. Notably, the study considered a best-case scenario
by recruiting educated, technology-savvy users who were explicitly
instructed to compare safety numbers.

But even if users were to authenticate one another, it is unlikely
that they would perform the authentication ceremony again when
under attack. When an adversary impersonates a user, messaging
applications will typically notify the impersonated user’s contacts that
their conversations” safety number changed, encouraging to proceed
only after authenticating the session again. However, to successfully
thwart an impersonation attack, users must (i) notice and understand
this warning, and (ii) compare safety numbers in person, which re-
quires physical proximity, or (iii) compare safety numbers using an
ad-hoc out of band channel, which must be first agreed upon — while
possibly talking to an attacker.

As we discussed in Section 3.3, key transparency systems were
proposed to address the shortcomings of safety number comparisons,
and both iMessage [1] and WhatsApp [101] provide key transparency
services. In contrast to social authentication, transparency systems
have the upside that they require no user-interaction as long as the
providers act honestly, but this comes at the cost of a significant engi-
neering effort to implement authenticated data structures correctly and
can require recruiting external auditors. Moreover, transparency sys-
tems cannot prevent compromise but only make it detectable, and they
provide no notion of authentication, which is desirable in its own right.

Keybase [86] were the first to propose a design promising to pro-
vide social authentication, but Keybase requires manually and publicly
posting key material, which is error-prone due to its reliance on man-
ual posting and discloses account associations to everyone. In contrast
to Keybase’s approach, SOAP provides more automation and stronger
privacy guarantees. After Zoom acquired Keybase, Zoom published
an end-to-end encryption whitepaper [28], which continued this line
of work. The whitepaper proposes “Identity Provider Attestations,”
which authenticate Zoom encryption keys using OpenID Connect and
DNS. Organizations can delegate an IdP via DNS as eligible to authen-
ticate that organization’s users. The Zoom client can then (i) upload
a commitment to a user’s public key at the IdP on the user’s behalf
using OAuth and a custom API, and (ii) request an identity token
that includes that commitment. Both these steps require adoption by
the IdP, and Zoom’s design considers the case in which an account
delegates authentication to a single, trusted IdP. SOAP can be seen as
an extension of Zoom'’s design that works without IdP adoption and
for multiple IdPs, which makes it strictly more difficult to compromise
a messaging account.
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4.6.2  Formal Analyses of OAuth Protocols

Our formal analysis of SOAP (Section 4.4.1) was influenced by the
recommendations of OAuth 2.0 Security Best Current Practice standard
[105] and the formal analyses of the OAuth 2.0 and OpenID Connect
protocols conducted in [65, 67]. The latter works, [65, 67], conducted
pen-and-paper proofs in the Web Infrastructure Model [66], which
captures more details of the browser environment than our model, e.g.,
HTTP status codes and their semantics. In contrast, we utilize Tamarin,
generating machine-checked proofs and consider a strictly stronger
adversary than both [65, 67] and the original specifications [75, 106,
135]. Neither of these considered the leakage of authorization requests.

Only [64], the formal analysis of the OpenID Financial-grade
API, considers a stronger attacker model not requiring Assumption 4
(browser redirect parameters remain confidential). However, [64] ana-
lyzes a different profile of OAuth 2.0 that does not match our setting
as it assumes that applications can protect secrets, which enables the
IdP to authenticate clients. Dropping Assumption 4 for SOAP would
allow the adversary to capture redirects and thus effectively allow
them to run the protocol themselves altogether (see Section 4.4.1).

[73] proposed the Privacy-Preserving OpenID Connect (POIDC)
protocol, which enhances OpenlD Connect’s privacy guarantees, and
also analyzed the security of their proposal in Tamarin. While [73]
models the process of users granting consent more explicitly (logging
in and providing consent are two steps, which we model as one), they
make stronger assumptions on user behavior. Namely, they require
that users only log in and consent to OpenID Connect flows when they
themselves launched the protocol. We do not make this assumption
and it is unrealistically strong. Some IdPs neither require a login
(given an existing session) nor require consent (given that consent
has been granted in the past; see Section 4.3.4). Moreover, [73] does
not model the authorization code flow with PKCE, which our design
relies upon. Nevertheless, our design’s privacy guarantees could be
enhanced if designs such as POIDC were adopted.

4.6.3  Sender Correspondence
4.6.4 Sender Correspondence in the Wild

Sender correspondence finds application beyond social authentication,
which we illustrate with the Automatic Certificate Management Envi-
ronment (ACME) protocol [3, 12], powering the free CA Let’s Encrypt.
ACME automates the certificate request and issuance procedure. Us-
ing ACME, CAs verify certificate requests using a challenge-response
mechanism in three steps. First, a CA receives a certificate request for
a given domain name, signed by a private key. Second, the CA sends
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a challenge to the respective public keyholder and asks them to return
it using DNS or HTTP. Third, the CA verifies that they receive the
signed challenge through the DNS or HTTP channel, at which point it
issues a certificate for the respective public key.

The ACME protocol can be seen as establishing sender correspon-
dence. Namely, the requesting public key is the pseudonym A and
the domain name is the pseudonym B. This has been overlooked by
related work so far. Related literature [20, 80] verifying the ACME
protocol only considered key establishment properties. Namely, they
require that for any attack on ACME, the adversary must know the cer-
tificate’s corresponding secret key. However, they do not consider iden-
tity misbinding attacks, where the adversary could provide the domain
name that gets associated with an honest key. [12] analyzed ACME’s
domain validation algorithm and considered an authentication-style
property. But as the authors only analyzed this one part of ACME,
they did not consider ACME’s overarching security goals.

In general, sender correspondence can be applied to any two chan-
nels that allow for information exchange associated to pseudonymes.
An IdP-managed online version-control system like GitLab is a chan-
nel where users exchange information (commits, comments, etc.)
associated with a pseudonym (usernames). Similarly, DNS is a chan-
nel where information (encoded in DNS records) is associated to
pseudonyms (domain names).

4.6.5 Relationship to Other Authentication Properties

We can formally relate sender correspondence to two other formal
notions of authentication: non-injective agreement as introduced in
Section 3.1, and sender invariance. In this section, we show how
sender correspondence connects to both.

Non-Injective Agreement

To relate sender correspondence to non-injective agreement, we first
formalize both properties. Consider the following, standard formal-
ization of non-injective agreement in Tamarin:

ALL R S m #tr. Receive(R, S, m) @ #tr
==> (Ex #ts. Send(S, m) @ #ts & #ts < #tr)

Now, compare this formalization to one of sender correspondence:

ALl V R1 R2 PX PY mx my #ta #trx #try.
( Correspond(V, PX, PY) @ #ta
& ReceiveChX(R1l, PX, mx) @ #trx
& ReceiveChY(R2, PY, my) @ #try)
==> (Ex S #tsx #tsy.
SendChX(PX, mx) @ #tsx
& Sender(S) @ #tsx
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& #tsx < #trx

& SendChY(PY, my) @ #tsy
& Sender(S) @ #tsy

& #tsy < #try)

ReceiveChX(R, S, m) and ReceiveChY(R, S, m) model thatR received
message m from S on channel X or channel Y respectively. SendChX(S, m)
and SendChY (S, m) model that S sent message m on channel X or Y re-
spectively. Note that S could be a pseudonym. Correspond(V, PX, PY)
formalizes that the verifier V identifies pseudonyms PX and PY with
the same party, i.e., that a verifier V terminated a protocol proving
social authentication. Sender(S) @ #t formalizes that the message sent
at time point t was sent by agent S.

Intuitively, sender correspondence relates to non-injective agree-
ment for two reasons: (i) Sender correspondence only works when the
two associated pseudonyms can be used for authentic communication.
Otherwise, it would make little sense to “tie” them together. (ii) The
formalizations of both properties are very similar: lines 3, 6, 8 and lines
4, 9, 11 exactly match our formalization of non-injective agreement.

We can express both points formally. Namely, sender correspon-
dence establishes non-injective agreement on channel X and Y for the
pseudonyms PX and PY. Specifically, we show that whenever there
is a successful run of a protocol providing sender correspondence
between PX and PY, that trace also satisfies non-injective agreement for
both of these pseudonyms (formalized using the respective ChX and
ChY events). If such a trace were a counterexample to non-injective
agreement for channel X, there must be an event ReceiveChX(R, PX, m)
for which there is no corresponding SendChX event. In that case, since
R1 and mx in the formalization of sender correspondence are uni-
versally quantified, that trace would be a counterexample to sender
correspondence as well. This contradicts our assumption that the pro-
tocol provides sender correspondence. The case for channel Y follows
symmetrically.

Note that this does not mean that sender correspondence implies
non-injective agreement. This is because sender correspondence re-
quires that a Correspond event has occurred on the trace. It could be
that a protocol P providing sender correspondence is designed in such
a way that it prevents violations of non-injective agreement when it
was run, but that either channel X or Y does not provide non-injective
agreement on their own. Only if we assume that running protocol P
is in some notion “independent” from communicating on channels X
and Y can we say that proving sender correspondence also proves the
non-injectivitiy of channels X and Y.

The relationship between sender correspondence and non-injective
agreement highlights that sender correspondence is a desirable au-
thentication property. When successfully running a protocol providing
sender correspondence, we know that both pseudonyms can be used
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for authentic communication and that they are controlled by the same
sender.

Sender Invariance

In [60], the authors distinguish two notions of authentication that we
conflate: (non-injective) agreement and sender invariance. Whereas non-
injective agreement (in [60]) is defined for all kinds of agents, sender in-
variance is defined only for pseudonyms, capturing the security guar-
antees behind authenticated channels that use unauthenticated public
keys. One does not know who one is connected with, but it must
always be the same agent, provided their corresponding private key
does not leak. The authors show that non-injective agreement implies
sender invariance. Thus, in the formalism of [60], sender correspon-
dence establishes both non-injective agreement and sender invariance.

4.7 CONCLUSION

Social authentication is an exciting authentication paradigm promis-
ing usable [159], remote, and automated authentication in messaging
applications. In this chapter, we precisely and formally defined social
authentication, we presented SOAP, a secure and practical protocol
implementing social authentication, we formally proved that SOAP
implements social authentication even in the presence of a strong ad-
versary, and we demonstrated SOAP’s practicality in two prototypes.
Beyond secure messaging, SOAP can be applied to any application
to authenticate key material and, more generally, applied to any kind
of pseudonyms. SOAP is automated to a large degree and can immedi-
ately be adopted by IdPs (indeed, it may not require adoption at all) be-
cause it relies on the well-established OpenID Connect protocol. It im-
plements a secure and complete in-application ceremony that requires
nothing more of users than their consent. Widespread adoption in
messaging applications would be a cost-effective measure to increase
their robustness against impersonation attacks and eavesdropping.

FUTURE WORK Our results suggest several next steps. First, we
argue that social authentication should be supported by modern mes-
saging applications. Improving our open-source Signal prototype
such that it could be deployed in production is a promising first step
in that direction. Second, social authentication should be applicable
far beyond secure messaging. For example, it could be used to se-
cure other communication such as e-mail, or video conferencing, or
it could be used as a second factor. Finally, we suggest amending
the OpenID Connect specification to support user-submitted claims
such that users can consent unambiguously and developers can use
streamlined APIs.
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ADEM: AN AUTHENTIC DIGITAL EMBLEM

5.1 INTRODUCTION

In this chapter, we tackle a novel security problem that arises in times
of armed conflict, and we address this problem using an accountability
mechanism. IHL mandates that military units must not target medical
facilities, such as hospitals. The emblems of the Red Cross, Red
Crescent, and Red Crystal are used to mark physical infrastructure
(e.g., by a Red Cross painted on a hospital’s rooftop), thereby enabling
military units to identify those assets as protected under IHL. In 2022,
the International Committee of the Red Cross (ICRC) [131] posed the
question: How can one extend such markings to digital infrastructure
such as servers and networks?

Extending protection to digital infrastructure comes with unique
security requirements. They are unique both in that existing authenti-
cation systems fail to provide them, and that they do not apply to the
physical emblems of the Red Cross, Red Crystal, and Red Crescent.

(i) Digital emblems require authentication. Assets must not be able
to fake protection, for example, by transferring markings from
medical to military infrastructure.

(ii) Those wishing to authenticate assets must be able to verify
protective markings in a way that does not call attention to
the fact that they are screening potential targets. We call this
property covert inspection.

IHL foresees that prior to displaying protective emblems one must
seek permission from competent authorities. A natural approach to
solve the problem of authentication would be to extend this process.
Authorities could sign certificates for what we call emblem issuers (EIs),
and EIs could use these endorsed keys to sign digital emblems. But
how would one identify competent authorities? Due to the digital em-
blem’s roots in IHL, a digital emblem system cannot designate a fixed
set of authorities or a “root authority” that attest which authorities are
legitimate. Under IHL, countries must be able to fully autonomously
decide which parties can display emblems under their jurisdiction.
Thus, the protective markings must work in a decentralized way.

We address the problem of authentication by specifying an ac-
countability mechanism, and thus avoid the problem of authenticating
competent authorities. Competent authorities can self-declare as such,
and we require both authorities and emblem issuers to commit to
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Figure 5.1: Overview of ADEM. The countries A and B endorse an emblem
issuer as legitimate, which in turn endorses a hospital as belonging to them.
The hospital’s protected asset distributes digital emblems using UDP, TLS,
and DNS. The countries’ militaries can independently verify these emblems
using their own countries” public keys.

sufficient evidence that they can be held accountable should they ever
mark unprotected infrastructure. This design matches the practice
around physical emblems. Everyone can paint a Red Cross on their
roof, but they must fear prosecution when doing so unlawfully.

Existing systems solve some but not all of the above challenges.
They typically require interaction between two participants and any
interaction between a military unit and a potential target would reveal
the unit’s intention to attack that target, should it be unprotected. An
unprotected target could use this knowledge to defend itself against
an imminent attack, which in turn would deter military units from ver-
ifying whether their targets are protected in the first place. Moreover,
typical designs providing authentication and accountability are usually
centralized, e.g., in authenticated data structures such as Merkle hash
trees (MHTs) [114]. Adding consensus protocols to maintain such data
structures in a decentralized way does not help as they aim to establish
consensus, which cannot be assumed in an international context.

To fill this gap, we present ADEM, an Authentic Digital EMblem, a
design that solves all these challenges. Figure 5.1 provides an overview
of ADEM. Digital emblems in ADEM are cryptographically signed
messages and authenticate an asset as protected under IHL. Emblems
are distributed actively by these assets using UDP, TLS, or DNS in a
way that provides covert inspection. Emblems are accompanied by en-
dorsements, certificate-like objects signed by independent authorities
such as countries. ADEM provides accountability by using the CT log
infrastructure, where parties commit to their public keys, and ADEM
does not require any updates to the Internet’s infrastructure.

In total, we present three contributions.

¢ The ICRC recently published a report that presents the idea
of a digital emblem and proposes initial requirements [131].
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These requirements, however, are mostly high-level and not
actionable. For example, the ICRC requires that a digital emblem
must be “obvious and easily visible.” We take the report as a
basis to precisely define the requirements for a digital emblem,
emphasizing its security requirements.

* We present an ADEM, a design that achieves all these require-
ments and implements a digital emblem analogous to the physi-
cal emblems of the Red Cross, Crescent, and Crystal.

¢ We provide a comprehensive threat model and security anal-
ysis showing that ADEM achieves strong security guarantees
against an active network adversary. This includes both the
formal definition and proof of authentication and accountability
using Tamarin and a security rationale for covert inspection. In
doing so, we highlight that accountability is a subtle property,
hard to root in intuition, and (perhaps not coincidentally) rarely
considered in the literature.

ADEM has gained significant traction since its original proposal.
Prior to its initial publication, ADEM was evaluated in a series of
meetings organized by the ICRC. Domain experts with various back-
grounds, such as health care, the military, and cybersecurity were
invited to provide feedback on the idea of a digital emblem in gen-
eral and design proposals, such as ADEM, in particular. From these
meetings, the ICRC concluded in their report to “continue research
and consultation on a possible ‘digital emblem’, [which] will require
further work on the technical development, validation and verification
of possible solutions” [131]. Since then, a resolution encouraging the
ICRC to continue the development of a digital emblem was adopted at
the 34th International Conference of the Red Cross and Red Crescent
[130]. This resolution was voted upon by all states and national Red
Cross and Red Crescent movements of the world. Now, the formation
of a working group for digital emblems at the Internet Engineering
Task Force (IETF), an international standards organization, is in its
final stage, and we plan to begin the technical standardization of
ADEM in collaboration with the ICRC within the next months [57].

OUTLINE We proceed as follows. We start by defining the require-
ments of a digital emblem (Section 5.2). Afterwards, we present ADEM
(Section 5.3), present formal notions of accountability (Section 5.4),
and analyze ADEM'’s security (Section 5.5). Finally, we present related
work (Section 5.6) and draw conclusions (Section 5.7).

5.2 THE PROBLEM

We begin with the requirements for a digital emblem. For this, we
introduce relevant legal and historical background, describe the prob-
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Figure 5.2: Parties involved in deployment and use of digital emblems.

lem domain, and finally provide a digital emblem’s requirements,
which follow from the ICRC’s report on digital emblems [131]. How-
ever, whereas the report introduces requirements on a much higher,
abstract level and without a detailed consideration of security, we
present a comprehensive list of actionable, technical requirements and
put security in focus.

5.2.1 Legal and Historical Background

The Geneva Conventions [128] and their Additional Protocols (APs)
constitute the core of IHL and establish legal rules on the conduct of
armed conflict. These rules codify the meaning and usage of protective
emblems, namely, the Red Cross, Crescent, and Crystal, permitting
Els to mark their assets, such as vehicles, personnel, or buildings
with these signs during armed conflicts. These signs inform other
parties about an asset’s affiliation with the International Red Cross and
Red Crescent Movement (indicative use), or about an asset’s protected
status under IHL (protective use). Actors bound by IHL must respect
an asset’s protected status and not attack it, except in very limited
circumstances.

Since 1949, the Geneva Conventions have been amended and ex-
tended. AP I[126, 127], for example, contains additional regulations
on how Els could communicate their status using technical means, like
radar transponders and radio signals. Recognizing that technology
may progress rapidly, AP I allows for the ICRC to convene state ex-
perts to review and suggest updates to the technical means by which
the ElIs may be identified. In order to initiate discussions among states,
the ICRC proposed the idea of a digital emblem on an international
stage [131] in collaboration with external experts.

5.2.2  Problem Domain

We next introduce the different stakeholders and parties of a digital
emblem. Figure 5.2 shows the five relevant kinds of actors. First and
foremost there are emblem issuers (EIs) who operate in areas of conflict
and conduct operations that enjoy protection under IHL utilizing
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protected digital assets, such as mobile devices (tablets, smartphones),
servers (both virtual and dedicated), processes such as web servers,
or an EI’s intranet. Prior to displaying protective emblems, EIs must
seek permission from competent authorities. When they are given
permission, Els can apply digital emblems to their protected assets,
which present them to three types of agents.

Regular users of an asset do not pay attention to the emblem, for
example, when they visit a website. Verifiers respect IHL and thus pay
attention to the emblem as they only wish to attack lawful (under IHL)
targets. They are typically part of an armed force engaged in a conflict.
We can assume that most verifiers (typically military units) will be
associated with an authority (typically their country or an ally), and,
hence, that such verifiers can obtain the authentic public keys of their
affiliated authorities through secure, out-of-band channels. Adversaries
are willing to violate IHL and seek to abuse digital emblems. For
example, they may seek to issue emblems to unprotected assets.

We highlight that we must assume verifiers to respect IHL. An
emblem works like a sign and will thus only work for those that respect
it. In our case, we define verifiers to be those parties that respect the
sign and thus respect IHL, for which there can be many reasons.
Countries or independent conflict parties may respect IHL because
they are bound by it and, consequently, attacking protected assets can
be a war crime. Verifiers not bound by IHL, e.g., cybercriminals, may
also want to not target protected assets to avoid unwanted attention
or because they respect the humanitarian cause.

5.2.3 Requirements

We derive the technical requirements of digital emblems from two,
more abstract requirements. First, the ICRC states that a digital em-
blem should fit into the existing framework of IHL [131]. Compliance
with IHL facilitates the diplomatic process of adopting a digital em-
blem, possibly integrating it into AP I. In particular, this means that
a digital emblem should work similarly to the existing physical em-
blems. Second, a digital emblem must be able to prevent attacks on
protected assets in practice. The physical emblems achieve this by
informing verifiers about an asset’s protected status under IHL." As
the emblem is a sign, verifiers must be willing to pay attention to
digital emblems for them to have an effect, which critically informs
our problem statement.

We start with the digital emblem’s functional requirements, which
we summarize below. We derive these requirements from the abstract
requirement that digital emblems must work like the existing physical
emblems.

Although THL also permits the indicative use of an emblem, we subsume this case
under the protective use of an emblem in the remainder of this thesis.
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A digital emblem must be decentralized. There can neither be a
fixed set of parties in charge of distributing emblems nor a fixed
set of authorities deciding who is eligible to issue emblems.

Just as a flag with a Red Cross can be affixed to supplies, per-
sonnel, buildings, or vehicles, a digital emblem must be widely
applicable to a broad range of devices, infrastructures, and orga-
nizations.

Again, just as a flag with a Red Cross can be removed at any
time, a digital emblem must be similarly easily removable. In
some scenarios, digital emblems may become rather a target
sign than a protective sign. With a removable emblem, Els can
assess their individual risk and remove digital emblems freely
whenever they find it necessary.

Agents must be able to verify the presence of digital emblems. With
physical emblems, unprotected assets will simply not show the
flag of the Red Cross. Likewise, in the digital domain, these
assets will not present a sign stating that the asset has no emblem,
but rather no emblem. Verifiers must always be able to decide
with reasonable confidence whether an asset is marked with a
digital emblem.

We next turn to the digital emblem’s security requirements. We
derive these from the abstract requirement that digital emblems must
prevent attacks in practice. This can only be achieved when verifiers
are willing to use the digital emblem system. We summarize the
digital emblem’s security requirements (SR) below.

SR1

SR2

Verifiers never want to reveal themselves as inspecting emblems.
If verifiers were to reveal this, their targets could use that knowl-
edge to protect themselves against an imminent attack. Verifiers
intend to attack lawful (under IHL) targets and would never
want to warn their targets before an attack. Thus, a digital em-
blem must provide what we call covert inspection: Agents who
wish to verify whether an asset is protected under IHL must
be indistinguishable from agents who interact with that asset
for other legitimate purposes. In particular, covert inspection
implies that emblem presentation must be active, i.e., verifiers
will be sent emblems and need not query them explicitly.

Emblems must be verifiably authentic. Agents must be able to
correctly associate emblems to the respectively marked assets
and must be able to have reasonable confidence in the emblem
marking actually protected assets.

Since a digital emblem system must be decentralized (see FR1),
we argue that a digital emblem can best provide authenticity
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when it provides accountability.> That is, one must be able to
identify parties that issued fraudulent digital emblems to assets
not protected under IHL. An accountability mechanism addition-
ally matches a digital emblem’s legal nature. There cannot be a
mechanism that automatically decides whether an asset truly en-
joys protection under IHL, and authorities and Els might err or
act maliciously when deciding who to endorse or what to mark
with a digital emblem. Should a digital emblem be codified in
law, it is crucial that any such misbehavior can be prosecuted.

Interestingly, the requirement for authentication (SR2) was not
considered when designing the original, physical emblems. Evidently,
the physical emblems provide no means to authenticate whether they
are legitimate. We argue that this is the case because the physical
world provides a means of immediate accountability. Whenever someone
displays a flag of the Red Cross, they put themselves on the line. If
you were to hang a flag of the Red Cross on your balcony, you could
expect a visit from the police. If you were to drive around in car with
a Red Cross on it, you could be stopped and questioned too. This
is not the case in the digital world, where fraud is often cheap, easy,
scalable, and not attributable.

Our security requirements can further be justified from the require-
ments explicitly listed by the ICRC in their report [131], to which we
provided major feedback and input. In their report, the ICRC lists
that “probing for a ‘digital emblem” must not identify a cyber operator
as a potential threat actor” and that emblems must be “obvious and
easily visible.” We address both notions with the positive security
requirement covert inspection (SR1). Additionally, the ICRC requires
that a digital emblem must be “trustworthy” and that “cyber operators
[must be] able to verify [an emblem’s] validity.” We understand this as
meaning that a digital emblem must be authentic (SR2). Noteworthy,
accountability was not considered in the ICRC’s report.

5.3 DESIGN

In this section, we start by giving an overview of ADEM and how
its design meets the requirements just identified, then we proceed to
technical details, and we close with an example of ADEM in practice.
ADEM relies, in part, on the Web PKI, which associates domain names
with TLS public keys, and the CT ecosystem, which monitors issued
certificates. We introduced both the Web PKI and CT in Chapter 1 and
Section 3.3 respectively. See [46, 149] for a more detailed overview.

See also Section 5.1 for our reasoning on why a digital emblem should provide
accountability.
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5.3.1 Querview of ADEM

ADEM identifies protected assets via their network address, i.e., an
address (IP address or domain name) and port combination, to be as
widely applicable as possible (FRz2). Clearly, an address/port combina-
tion can label network-connected processes such as servers. Moreover,
one can protect entire networks using address prefixes or protect
devices by labelling every port of an address.

Digital emblems in ADEM are cryptographically signed and mark
a set of assets as protected. Assets send emblems to anyone interact-
ing with them. This distribution mechanism supports covert inspection
(SR1), that emblems are removable (FR3), and that their presence can be
verified (FR4). An emblem can be verified as authentic (SR2) by veri-
tying its signature, but naturally this requires authentic public keys.

ADEM specifies three types of public/private key pairs: asset keys
used to sign digital emblems, intermediate keys used to manage key
hierarchies, and root keys identifying organizations (authorities and
Els). As a means to obtain authentic public keys, ADEM specifies
endorsements, which are certificates that attest a given public key as be-
longing to a given organization, and that this organization is believed
by the endorsement’s signer to be eligible to issue digital emblems.
Asset keys are endorsed by intermediate keys, and intermediate keys
are endorsed by root keys. The root keys of one party can additionally
endorse the root keys of another party.

Verifiers can freely choose which endorsing parties they trust,
which makes ADEM decentralized (FR1). We expect that most verifiers
(typically military units) will only accept emblems accompanied by an
endorsement from an authority they trust, like their own country or an
ally. As we pointed out in Section 5.2.2, we assume that such verifiers
can obtain the authentic public keys of their affiliated authorities
through secure channels. Such a verification practice establishes a
closed loop of trust: Military units can see that their own country
endorsed the protected asset in question.

To provide accountability (SR3), ADEM requires organizations to
commit to their root keys. The non-repudiation of digital signatures
alone is necessary but not sufficient to provide accountability: a key-
holder cannot repudiate signatures but could still repudiate key own-
ership. ADEM implements this commitment mechanism by utilizing
CT logs. Organizations must publish their root keys within certificates
that bind them to a central, HTTPS-enabled website identifying the
organization, e.g., https://emblem-issuer.org, which we call their
organization identifier (OI).

This commitment mechanism comes with additional benefits:

1. Parties can monitor impersonation attempts by monitoring the
CT logs.
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Figure 5.3: A typical ADEM setup. Multiple authorities (green) endorse
an EI's root key. The EI (blue) maintains an internal hierarchy of public
keys by signing multiple internal endorsements that ultimately endorse the
emblem signing key as belonging to the EI. Parties commit to their root keys
by submitting specifically encoded Web PKI certificates to CT logs, which
are signed by standard CAs.

2. Parties can revoke their root keys by revoking the binding cer-
tificate.

3. Independent verifiers such as cybercriminals, who may not be
able to obtain authentic root keys out-of-band, can authenticate
root public keys as belonging to a domain name.

Figure 5.3 shows a typical ADEM setup. Authorities issue endorse-
ments to an EI, and the EI manages an internal public key hierarchy:.
The authorities and the EI are identified by a domain and a root key.
Finally, the EI issues an emblem, which marks multiple assets as
protected.

In the rest of this section, we explain the syntax and semantics of
emblems and endorsements and how organizations publish their root
keys. We also explain how protected assets actively distribute digital
emblems. Finally, we explain how verifiers obtain and verify digital
emblems.

5.3.2 Emblems

We call both emblems and endorsements tokens. Emblems resemble
the statement: “Asset A belongs to EI P and is protected under IHL.”
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Field Purpose

ass List of protected assets (Als)
iss Emblem issuer (OI)
iat Time of issuance

nbf/exp | Validity window
prp | Purposes
dst | Distribution method

emb

Table 5.1: Fields of an emblem. emb maps to a JSON object with two keys
that constrain the contexts in which the emblem may be used.

. asset-identifier = address [ ":" port ]
> address = [ "x." ] domain-name

3 | "[" IPv6 "]"

}

5 org-identifier = "https://" domain-name

Figure 5.4: Syntax of Als, identifying network-connected processes, and
OlIs, identifying organizations. port is an integer. Domain names and IP
addresses are encoded as usual.

Emblems encode this statement as JWSs [83], a popular standard for
signed attribute-value stores, using the attributes listed in Table 5.1.3

The attribute iss encodes an organization (who issues a token) and
ass encodes assets (what is protected). Organizations are identified by
Ols, and assets by asset identifiers (Als). Both closely resemble URIs [18].

Figure 5.4 depicts the syntax of OlIs and Als. Ols are encoded
as domain names prefixed by https://. Als are an address (IP ad-
dress or domain name) and port combination and point to network-
connected processes. For example, https://example.comis an OI and
example.com:8080 or [::FFFF:93.184.216.34]1:22 are Als. As Als
permit IP address prefixes and wildcards in domain names, one Al
defines a set of protected assets, more concretely, protected processes.
A process reachable under the IP address IP and port P is included in
the set of an AI Al if both:

1. The domain name encoded within AI resolves to IP or to a
prefix of IP, or the IP address encoded within Al is IP or a
prefix of IP.

2. Al’s port is equal to P, or Al does not include a port.

An emblem can include multiple Als and marks all assets that these
Als point to as protected under IHL.

In this section, we omit some technical details. We only include critical attributes,
omitting those with purely technical purposes, such as version numbers. A complete
list of artifacts is provided in ADEM’s technical specification (see Section 1.6).
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Field Purpose

iss Endorsement issuer (OI)

sub Endorsed party (OI)

key Endorsed public key
nbf/exp | Validity window
ver | Version of CT log
log | id | ID of CT log
hash | Certificate leaf hash
prp | Purpose constraints
dst | Distribution constraint
ass | Asset constraints (allowlist)
wnd | Max emblem lifetime

emb

Table 5.2: Endorsement fields. log maps to an array of JSON objects that
specify in which logs a root key-binding certificate was included. emb maps
to a JSON object whose attributes constrain emblems signed under this
endorsement. The constraints apply to the respectively named emblem
attributes.

5.3.3 Endorsements

Endorsements are also encoded as JWSs and resemble the statement:
“Party Py attests that public key K belongs to party P> and that P, may
signal protection under IHL.” They provide a means to obtain authentic
public keys for emblem verification. Additionally, endorsements may
come with constraints. For example, a country may endorse an EI
to mark its website humanitarian.org as protected, but nothing else.
Constraints allow Els and authorities to mitigate the consequences of
private key compromises and to prevent abuse within Els. Technically,
anyone can endorse anyone else, even oneself, e.g., to manage key
hierarchies within one’s own organization. In practice, we expect
that most party-to-party endorsements will be signed by countries or
supranational alliances like the Arab League or European Union.

Endorsements include the attributes listed in Table 5.2. An en-
dorsement’s constraints can specify upper bounds on an emblem’s
lifetime, over which channels emblems may be distributed, and what
kind of assets may be labeled (listing permitted Als). log lists CT
logs that provide the party’s root key commitment for the purpose of
accountability, as we explain in Section 5.5.2.

5.3.4 Root Keys

Naturally, chains of endorsements (as specified in the previous section)
will terminate in some key that is not further endorsed. We call these
keys root keys. Recall that most verifiers will be able to authenticate the
root keys of at least some authorities out-of-band (see Section 5.2.2).
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Such verifiers can authenticate a claim of protection by verifying
that it was (transitively) endorsed by a public key they trust. In
designing ADEM to provide accountability, however, we do not rely
on out-of-band authenticated public keys. ADEM should (and will)
provide accountability also in cases where public keys cannot be
authenticated by requiring parties to bind their root keys to their O],
which implements a root key commitment mechanism.

Our commitment mechanism enables verifiers to associate em-
blems and endorsements to domain name holders and to hold these
domain name holders accountable for misbehavior. Further, this com-
mitment mechanism enables verifiers to authenticate root keys of
authorities they are not affiliated with, it allows parties to revoke root
keys, and it enables organizations to detect impersonation attempts,
i.e., attempts to maliciously associate public keys with their OL

Our commitment mechanism works as follows. Organizations
commit to a root key using a mechanism inspired by the concept
of “self-authenticating traditional (SAT) domains” [154]. First, they
calculate their root key’s hash h(pk) and register the subdomain
h(pk).adem-configuration.OI, for example:

z247co3xrah...danumgcfx7a.adem-configuration.ei.org.

Second, they request a TLS certificate [29] that is valid for both their
OI and this new subdomain. Finally, they submit this certificate to
the CT logs. A root key is specified as correctly associated to an OI
if there is a certificate that (i) is not revoked, (ii) properly logged in
the CT infrastructure, and (iii) binds the key to the OI as described
above. Note that proper CT log inclusion requires that the certificate’s
signature is valid, and that there is a validation path to a root certificate
accepted by the log in question.

ADEM does not specify how verifiers check a certificate’s revo-
cation status. We recommend, though, to use offline verification
mechanisms that are employed and maintained by modern browsers
such as Mozilla Firefox [120] or Google Chrome [45]. Using these
mechanisms, verifiers would regularly download a set of revoked cer-
tificates that has been assembled by a third-party (Mozilla or Google,
in the examples above). Using offline certificate revocation checks,
verifiers only reveal that they use the mechanism at the time they up-
date it. We will cover revocation checks in more detail in our security
analysis (Section 5.5.3).

5.3.5 Distribution
ADEM specifies three interfaces for token distribution. Either, tokens

are actively pushed to anyone interacting with a protected asset via
TLS [129] or UDP [123], or they are stored in DNS records [115, 116].
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In each case, ADEM distributes emblems with the endorsements
necessary to cryptographically verify an emblem as genuine.

There is no limit to the number of interfaces ADEM could support,
and extending ADEM to support additional interfaces is straightfor-
ward. However, the more interfaces ADEM supports, the greater the
burden that ADEM puts on verifiers, who would need to implement
detection on every interface to ensure that they are not attacking an EI.

TLs We envision TLS to be the most popular interface to transmit
tokens. Many application-level protocols, such as HTTPS, run over
TLS. Moreover, using TLS provides attractive security properties as
tokens cannot be dropped by an on-path attacker.

Tokens distributed over TLS are appended as a custom extension to
the NewSessionTicket message. This message is intended to establish
pre-shared keys for session resumption, but is dropped by clients that
do not support its extensions. Thus, our TLS distribution mechanism
is backwards-compatible with existing TLS clients.

upr To support the labeling of arbitrary network traffic, we also
use UDP to distribute tokens. UDP does not guarantee reliability, so
an adversary may drop UDP traffic that includes tokens. However,
an emblem sent over UDP still provides authenticity and can prevent
attacks when received. Whenever a protected asset receives a packet
from a new network address, it sends tokens to a specified port at that
address.

DNs Finally, protected assets can be labeled using DNS TXT records,
which enable associating arbitrary information with a domain name
[133]. Naturally, this is only possible if the respective asset has an
associated domain name. A benefit of labeling an asset via DNS is
that access to the asset is not required for distribution or verification
and no additional software must be deployed.

Note that DNS distribution requires explicit queries from verifiers,
suggesting a possible conflict with the covert inspection requirement
(SR1). We will cover this tension in our security analysis later (Sec-

tion 5.5.3).
5.3.6 Determining Protection Status

The distribution mechanisms just presented specify how a verifier
could receive digital emblems given a domain name or given an asset
with a port that runs TLS. Still, verifiers require a procedure to decide
whether an arbitrary digital asset is protected under IHL. In particular,
they must be able to determine this for digital assets not protected
under IHL, while not alerting those assets about a planned attack.
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To help verifiers decide whether an asset enjoys protection, assets
must distribute emblems the following way. If an asset distributes
emblems via UDP, the asset must monitor all incoming requests,
e.g., via firewall rules. Whenever an asset receives a request from
a new IP and port combination, it must send an emblem via UDP
to that address. Assets need not parse incoming packets, however,
and may respond in any way they like, e.g., with a TCP RST (reset),
Internet control message protocol (ICMP) error messages, or not at
all. If an asset distributes emblems via TLS, it must do so with every
TLS connection. Such assets must also run TLS servers on ports 443
(HTTPS) and 853 (DNS over TLS). These servers can be minimal and
solely distribute emblems.

To decide whether a given asset is protected, verifiers should run
a procedure that depends on the address they wish to verify. Given
a domain name, they should check the domain’s TXT records for
emblems and resolve the domain name to IP addresses to check those
for digital emblems too.

Given an IP address, verifiers can send an arbitrary packet to that
address and wait for an emblem in response via UDP. If they do not
receive an emblem, they should also try to establish a TLS connection
to port 443 or 853 and wait for an emblem to be sent as part of a
NewSessionTicket. Should a verifier learn an asset’s domain name
only while checking for an emblem, e.g., during the TLS handshake,
they should additionally check these domain names for emblems
stored in DNS TXT records.

5.3.7 Emblem Verification

After probing an asset as just described, if a verifier has received em-
blems and endorsements, they will next verify them. The verification
procedure takes as input: a digital emblem, a set of endorsements as-
sociated with the emblem (possibly empty), and a set of trusted public
keys (possibly empty). For example, if the verifier were a military unit,
they might use their country’s root public key as a trusted public key.
The verification procedure returns a set of security levels.

First, the procedure verifies every received token’s signature and
checks that it has not expired. The procedure discards any token
that fails this check. The procedure also checks that the emblem is
valid with regard to every endorsement that passed previous checks,
e.g., that the emblem’s designated protected assets comply with every
respective endorsement’s constraints, etc.

Second, the procedure determines and returns all the emblem’s
security levels, which indicate whether an emblem was endorsed and
by whom. The security levels are as follows.
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INVALID: If the emblem was discarded as invalid during preprocess-
ing or no other security level applies.

UNSIGNED: The emblem does not bear a signature.
SIGNED: The emblem does not designate an issuer.

ORGANIZATIONAL: All tokens designate the same issuer, all endorse-
ments transitively endorse the emblem’s verification key, and
the topmost endorsement’s public key is correctly configured as
the EI's root key (Section 5.3.4).

ENDORSED: Same as organizational, but additionally, there are en-
dorsements with a different issuer than that of the emblem. All
such endorsements’ verification keys are correctly configured as
the respective issuer’s root key and endorse the emblem issuer’s
root key.

SIGNED/ORGANIZATIONAL/ENDORSED-TRUSTED: Same as the se-
curity levels signed /organizational /endorsed, but a trusted public
key was used in the verification of the respective level.

The different security levels come with different security guaran-
tees. Security levels other than endorsed were included upon request
of the ICRC and increase ADEM'’s flexibility, e.g., enabling easy de-
ployment in cases of emergency. Els could announce their root or their
asset public keys through other channels, allowing verifiers to authen-
tically associate emblems to those parties even when they are only
signed or organizational. In practice, though, we expect that most ver-
ifiers will only accept emblems with the security level endorsed-trusted.

If a verifier only wants to check if an emblem was endorsed by
at least one trusted public key, they could skip the verification of
correctly configured root keys, etc. Verification would then require no
network calls beyond the initial probing. This leaves them vulnerable
to certain kinds of attacks, e.g., they would not notice that an EI
revoked its root key, but this highlights how simple verification can
be. Even the full verification procedure for an endorsed emblem only
requires additional network calls to check that the certificates binding
a root key to an Ol are correctly submitted to the CT logs. One must
also check that these certificates have not been revoked. However,
as we recommend using offline verification for these checks, their
network-overhead is constant.

5.3.8 Example

We close this section with a brief example that showcases how ADEM
might be deployed in practice. Consider an imaginary hospital net-
work as depicted in Figure 5.5. The network is connected to the

77



5.3 DESIGN

E < UDP OZ — Emblem Server

3 —_—

c

g op

Q UDP, TLS, DNS — Web Server

k5]

5 “

= < — l:l Staff Devices
‘ ™

Firewall i‘ﬂ T ((( ))) — Ioﬁj Medical Devices

o] CEXXD

Router

Figure 5.5: Imaginary hospital network

Internet via a router that also hosts a firewall, restricting outside ac-
cess to certain assets. The network comprises four types of assets:
network-connected medical devices, staff devices such as laptops and
tablets, a web server advertising the hospital’s services, and an emblem
server that distributes emblems.

The medical devices do not have the technical means to distribute
emblems themselves. The emblem server protectively marks these
devices by regularly broadcasting a digital emblem via UDP to the
local network. Such emblems serve as a defense in-depth against
attackers who penetrated the hospital’s network. Such an attacker
may not have had a chance to inspect emblems from the outside, e.g.,
when they deployed malware via a malicious email attachment.

The staff’s devices can monitor external traffic themselves, using
firewall rules to log the traffic. Whenever they observe a packet from a
new network address, they forward the address to the emblem server,
which sends an emblem to that address via UDP.

Finally, the web server also marks itself as protected through all
the interfaces available (TLS, UDP, and DNS). It requests emblems for
itself at the emblem server each time its last emblem expired, but it
need not request a new emblem for every recipient, as emblems are
not recipient constrained. The server then sends those emblems to
clients attempting to connect.

Presume that the hospital operates in a region of conflict between
two countries: A and B. Utilizing endorsement constraints, both coun-
tries could endorse the EI in question to issue emblems within the IP
prefix that is managed by the router. Whenever the countries” mili-
taries would receive an emblem, they could see that their own country
endorsed the issuing EI, giving them good reason to trust that the
emblem is legitimate. But also independent verifiers could take the
fact that two rivaling countries endorsed the EI as an argument to

78



~

5.4 ACCOUNTABILITY FORMALLY

trust emblems issued by the EI. The chance that two warring countries
would collude to set up a fake “EI” is negligible.

This example highlights that ADEM is flexible in that it applies
to a wide variety of protected assets and network setups, and that
it enables a separation of concerns: not all protected assets need
to be equipped with key material, only the emblem server requires
that. Moreover, ADEM’s design does not require the emblem server
to authenticate emblem requests.* The emblem server could issue
emblems for the IP-range of the hospital’s network, and thus they
would only apply to actually protected assets.

5.4 ACCOUNTABILITY FORMALLY

In this section, we prepare for our security analysis of ADEM and
formally define accountability. In comparison to properties like se-
crecy or authentication, a standard definition of accountability does
not exist, and a formal notion of accountability is harder to root in
intuition. We introduce two notions of accountability: One by Kiisters,
Truderung, and Vogt [93] and one by Morio and Kiinnemann [118]. For
reasons that will become clear later, we call Kiisters, Truderung, and
Vogt’s notion judge-accountability and Morio and Kiinnemann’s notion
formula-accountability. We then compare both notions and explain why
we follow judge-accountability in this thesis. Judge-accountability,
however, cannot be directly applied using the Tamarin prover because
Tamarin considers an adversary that is always active. The frame-
work of judge-accountability has a more flexible adversary model and,
in particular, can model that messages sent to the judge cannot be
dropped by the adversary. We finally discuss how we adapt judge-
accountability such that it can be applied using the Tamarin prover.

5.4.1 Accountability according to Kiisters, Truderung, and Vogt

Kiisters, Truderung, and Vogt [93] define their notion of accountability,
judge-accountability, in a setting where participants communicate
over secure channels, but can individually be compromised, and in
which there is a dedicated protocol participant, the judge, that can
blame individual protocol participants. They define accountability in
terms of accountability properties. An accountability property is a set of
accountability constraints of the form

Ci=a; = Vi ||V},
where ; is a condition under which the constraint applies, and V/
are verdicts, which blame parties that are misbehaving. Typically, «;

For the purposes of spam prevention, it would be desirable, though, that the server
authenticates requests or throttles emblem generation.
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encodes that a desired security goal of the underlying protocol was
violated. A verdict V is a formula built from V, A, and atoms dis(a),
which indicate that 2 misbehaved. A protocol’s judge is fair when they
only blame misbehaving parties. A judge ensures an accountability
constraint C; if for every trace t either a; does not apply to t or the
judge blames parties in t that match some verdict Vi] . A protocol
provides an accountability property when its judge (i) is fair and
(ii) ensures all accountability constraints.

5.4.2 Accountability according to Morio and Kiinnemann

Morio and Kiinnemann define an alternative notion of accountability,
which we call formula-accountability. They integrate their framework
into the Tamarin prover. The authors define accountability as a meta-
property, i.e., in relation to a security property ¢. Their definition of
accountability uses three concepts:

COUNTERFACTUAL RELATION Counterfactual relations relate what hap-
pened with what could have happened. This relation formalizes
which misbehavior caused a violation of a security property ¢.
The authors limit themselves to considering the weakest coun-
terfactual relation r,, where (t,t') € r, whenever a party being
corrupted in ¢ implies they are also corrupted in t.5

A POSTERIORI VERDICT FUNCTION The a posteriori verdict function
apvy,, identifies misbehaving parties that caused (with respect
to a counterfactual relation r) a violation of security property ¢.
Critically, apv,,, has access to all traces and the counterfactual
relation r. This means that it is defined from an omniscient point
of view.

VERDICT FUNCTION A verdict function v identifies misbehaving par-
ties on a single trace, i.e., without knowledge of the counterfac-
tual relation and other traces.

A protocol provides accountability with respect to a security goal ¢
if apv,,, and v identify the same parties as misbehaving. To formalize
that parties identified by the a posteriori verdict apv, , indeed caused
a violation, formula-accountability requires that apv, , only identifies
parties as misbehaving on a trace t violating ¢ that also misbehave in
every trace t’ violating ¢ that “could have happened” (i.e., (t,t') € r).

One goal of formula-accountability is to distinguish benign cor-
ruption from malicious misbehavior. Morio and Kiinnemann point
out that corruption, e.g., by revealing long-term key material to the
adversary, is not sufficient to cause misbehavior with respect to a secu-
rity property violation. For example, the adversary could follow the

5 See [92] for the consideration of different counterfactual relations.
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protocol or deviate in benign ways, which may be impossible to detect
in the real world, and thus too strong of a goal for accountability.

Morio and Kiinnemann provide five verification conditions, formal-
ized with respect to a verdict function v, that can be verified with
state-of-the-art protocol analyzers such as Tamarin. When all these
conditions hold, the protocol provides formula-accountability. Con-
cretely, these conditions check that v (i) only blames parties when ¢
is violated, (ii) only blames corrupted parties, (iii) is minimal in that
v only blames parties that must be blamed, and is (iv) sufficient and
(v) complete in that v blames parties if and only if they could have
caused the violation of ¢.

5.4.3 Comparison of Accountability Frameworks

First and foremost, we argue that judge-accountability is easier to un-
derstand and thus a more desirable target for verification. It requires
non-trivial effort to convince oneself that a framework, defined by ref-
erence to a “counterfactual relation,” an “a posteriori verdict function,”
and five verification conditions, as defined in formula-accountability,
accurately captures the intuition of accountability. In contrast, judge-
accountability defines the general shape that accountability properties
have, and that they must be verified with respect to a judge. Thus,
their framework allows for more clearly communicating which secu-
rity guarantees a protocol achieves and under what assumptions.

The technical differences between judge- and formula-accountability
can be reduced to three observations:

¢ Formula-accountability strives for completeness, i.e., all parties
that caused a violation of ¢ are blamed; judge-accountability
does not.°

¢ Judge-accountability considers a dedicated protocol participant
that is the judge; formula-accountability does not.

¢ Formula-accountability considers an always-active network ad-
versary; judge-accountability uses a more flexible adversary
model.

Formula-accountability’s focus on completeness requires a notion
of causality. Only by reference to causality can one define when
parties must be blamed by a verdict function. Kiisters, Truderung,
and Vogt instead argue that completeness if often too strong of a
requirement. Many protocols do not provide for a way to identify all
parties that caused misbehavior, or only under certain assumptions.
They argue: “Altogether, rather than fixing the level of accountability

Note that judge-accountability also has a concept called “completeness,” but it is
defined with respect to an accountability constraint and not with respect to the
violation of a security property ¢.
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protocols are supposed to provide up front [e.g., completeness], it is
more reasonable to have a language in which this can be described
precisely, allowing to compare protocols and tell apart weak protocols
from strong ones.” [93]

By having a judge blame misbehaving parties, judge-accountability
can disregard whether participants actually caused a violation of a
desired security guarantee ¢, which simplifies their framework. They
can do so because the judge, being a protocol participant, must receive
evidence to form its verdict. The judge can only accept evidence
that is sufficient because the judge must be fair (correctly blaming
only misbehaving parties). It is hard to picture a protocol in which a
judge could identify “pointlessly” misbehaving parties while receiving
sufficient evidence of misbehavior.

Not considering a judge also raises the question whether a verified
verdict function v in the framework of formula-accountability could
be computed in the real world. The verdict function has access to
the entire trace and thus sees all messages exchanged between all
participants. This is not the case for a judge as a protocol participant,
who must be sent evidence which could potentially originate from
the adversary. It is obviously more desirable to prove that a judge
can identify some misbehaving parties than to prove that a function
identifies all misbehaving parties.

For all the above reasons, we follow judge-accountability in this
thesis. This, however, requires us to address the third difference be-
tween the two accountability frameworks: judge-accountability allows
one to model that the adversary cannot interfere with communication
between honest participants and the judge. In Tamarin, however, the
adversary is always active and cannot be prevented from dropping all
messages to the judge, which in turn would prevent the judge from
stating a verdict.

5.4.4 Accountability against an Always-Active Network Adversary

We next discuss how we adapt judge-accountability to Tamarin, which
is not straightforward as Tamarin considers an always-active network
adversary as explained above. In Tamarin, the adversary’s capability
to drop messages is modeled implicitly. A trace admitted by a set of
multiset-rewrite rules does not require all applied rules” conclusions
to be used. This applies, in particular, to messages sent by partici-
pants, even over secure channels. A trace where a security property
is violated and where a judge states a verdict will typically be an
extension of a trace in which only the security property is violated.
Thus, the trace that only violated the desired security property will in
general also be a valid trace, but this means that the judge does not
make a verdict and thus does not ensure an accountability property’s
constraints. Intuitively speaking, the violation of a security property
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does not imply that a judge makes a verdict. For protocols providing
accountability, it only implies that a judge could make a verdict if they
received the necessary evidence.

We address this problem by strengthening the accountability con-
straints” conditions such that they require an active judge. Our ac-
countability constraints are trace properties of the form:

VEP(R) A J(E) = V(7).

Here, ¢ is an assumption under which the constraint holds, ] models
which evidence the judge requires to make a verdict, and V models the
judge’s verdict that identifies misbehaving parties. ¢ and | together
stand in for a as defined in judge-accountability (see Section 5.4.1).
When verifying such accountability constraints using Tamarin, one
establishes the “judge’s” fairness. If the property holds on all traces, it
means that the evidence formalized in J(X) is strong enough to imply
that identified parties indeed misbehaved according to V(X), provided
that ¢ (X) holds.

This approach leaves us with two problems. The first problem is
that verifying accountability constraints of the above form does not
establish completeness in the sense of judge-accountability. This is to
be expected when considering an always-active network adversary
as discussed previously. We see the goal of completeness to establish
an accountability property’s relation to a desired security guarantee.
As an alternative for completeness, we will discuss our accountability
property’s relation to other security properties when presenting our
security analysis in Section 5.5.2.

The second problem is that our approach suffers from the same
issue as formula-accountability: How can we know that a judge as
modeled in | can exist? Given an arbitrary condition J, it could be
impossible for a real judge to decide whether | is the case (from their
viewpoint as a protocol participant). We addressed this issue by
modeling the constraints of our accountability properties such that
they only referred to facts that could be checked by a real judge. In
particular, rules using facts referenced in | only receive input from
the untrusted network, use environment assumptions, or we provide
alternative version of the same rules that can be triggered by the
adversary directly.

5.5 SECURITY ANALYSIS

Equipped with a formal definition of accountability, we proceed to
our formal analysis of ADEM. ADEM is designed to provide three
security properties: authentication, accountability, and covert inspec-
tion (see Section 5.2.3). In this section, we define our threat model
(Section 5.5.1), formalize ADEM’s authentication and accountability
guarantees, and prove that ADEM provides both properties using
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Tamarin (Section 5.5.2). Finally, we provide a separate security argu-
ment for covert inspection (Section 5.5.3).

5.5.1 Threat Model

We consider an active network adversary who can inject, intercept,
read, reorder, and replay any message and can corrupt any party’s
keys. We only constrain our adversary by the following assumptions:

1. Els only issue endorsements for keys under their control, and
their root keys are uncompromised.

2. Internal EI endorsements are constrained to only permit the
issuance of emblems for protected infrastructure.

3. Els only use root keys that are endorsed by at least one authority.

4. At least some authorities who endorsed an EI did so honestly.
Some may endorse illegitimate parties as Els, but they cannot
convince all other authorities to endorse such parties.

5. Organizations monitor CT logs for fraudulent public keys asso-
ciated to their OL

6. Verifiers have access to a trusted offline revocation mechanism.

While Assumption 1 expresses that we do not consider the compro-
mise of EI root private keys, Els can recover from root key compromise
through revocation in practice. Assumption 2 implies that the com-
promise of EI non-root private keys has no effect as the respective
endorsements’ constraints prevent any misuse.

Assumption 3 follows the idea that we laid out in Section 5.2.2:
we can assume that most verifiers will be affiliated with one or more
authorities and will only accept emblems endorsed by those author-
ities, i.e., will only accept emblems with the security level endorsed.
Moreover, Assumption 4 expresses that the authority of a verifier’s
choosing is indeed to be trusted (all but the trusted authorities may
be compromised). Assumption 5 concerns the Web PKI domain: we
assume that parties utilize the CT logs to monitor their own domains.

Finally, Assumption 6 reflects that we do not consider revocation
mechanisms in our formal model explicitly. As ADEM does not specify
the precise means verifiers use to check for revocation, a formal model
of all the possible ways to do this is out of scope. Nevertheless, we
will still consider the implications of revocation for authentication and
accountability (Section 5.5.2) and covert inspection (Section 5.5.3).

To put our security analysis into context, recall that in Section 5.2.2,
we introduced adversaries as those agents who do not respect IHL
and seek to abuse digital emblems. Note that adversaries who only
disregard IHL and are willing to attack unprotected entities cannot be
defended against using a digital emblem. As we noted in Section 5.2.3:
An emblem can only prevent attacks by those who respect it. The goal
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ADEM Parties

CAs CT Logs (Authorities/Els) Assets
domain . .
TLS key T l certificate request T i certificate l endorsement i emblem
. — .
certificate T

TLS Key
Configuration

Domain Root Key . .
Z> Z>

Figure 5.6: Components of our formal model. We model four kinds of
parties with five interfaces (e.g., CAs have an interface for certificate signing).
The model supports two main protocol flows: EI endorsement and emblem
distribution. Lines with dots at the end denote that the (partial) protocol
flow uses the connected interface.

of our security analysis is to establish that digital emblems cannot be
abused, e.g., to mark unprotected infrastructure.

5.5.2  Formal Analysis of Authentication & Accountability

We explain next how we formally modeled ADEM and proved au-
thentication and accountability using Tamarin. Our formal model
comprises 327 lines and 15 lemmas, and it required the implemen-
tation of a proof heuristic in Python and auxiliary lemmas for the
proofs to terminate. Except for one lemma, all lemmas can be proven
automatically when using our proof heuristics. Using a laptop with
32 GB of RAM and an Apple M2 Max CPU, Tamarin can verify all
lemmas in 87 s.

Formal Model of ADEM

Figure 5.6 provides an overview of our Tamarin model. It includes
CAs, CT logs, authorities, and Els as protocol participants. These par-
ties control keys associated with different protocols: TLS/HTTPS, cer-
tificate signing, and emblem/endorsement signing. Since the CT spec-
ification requires that logs must be monitored such that they preserve
the append-only property, we model CT logs such that certificates sub-
mitted to them can never be removed by using persistent facts. This
means that our model abstracts from an ordering on log entries. The
adversary can, though, include arbitrary entries in compromised logs.

Our protocol model consists of two phases. In the first phase,
we non-deterministically assign domain and subdomain names to
parties, TLS keys and certificates to these domains, and let ADEM
parties commit to root keys by requesting the corresponding Web
PKI certificates. In the second phase, a verifier receives an emblem
and a non-deterministically determined number of endorsements and
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. A1l id oi asset ak rk #tl #t2.
2 ( Emblem(id, oi, asset, ak) @ #t1
& RootEnd(id, oi, rk) @ #t2)
4 ==> ( (Ex el #x #y. 0I(ei, o0i) @ #x
& IsAsset(ei, asset, ak) @ #y)

6 | (Ex p #x #y. OI(p, oi) @ #x
7 & CompromisedParty(p) @ #y)
8 | (Ex otherA #x.

9 CompromisedKey(otherA, ak) @ #x)
10 | (not Ex 0iA rkA endK #t3.
11 AuthEnd(id, rkA, oiA, oi, endK) @ #t3)

2 | (ALl oiA rkA endK #x.

3 AuthEnd(id, oiA, rkA, oi, endK) @ #x
14 ==> ( (Ex p #y #z. 0I(p, 0iA) @ #y

: & CompromisedParty(p) @ #z)

16 | (not Ex p #y.

17 IsRootPK(p, 0iA, rkA) @ #y))))

Figure 5.7: Tamarin formalization of the authentication property. Emblem
represents that a verifier received and verified an emblem. RootEnd and
AuthEnd represent the same for EI and authority endorsements respectively.
IsAsset expresses that asset is a protected asset and IsRootPK associates an
authentic public key to an OL Lines 6f.,8f., and 10f. represent Assumption 1,
2, and 3 respectively.

verifies them. Note that we do not enforce the phases’ order, i.e., our
proofs also cover executions where the phases are interleaved.

We modeled the adversary as able to compromise any party and
their keys. Moreover, all certificates, emblems, endorsements, and the
like were modeled as being distributed over an insecure network.

Authentication

Within the model just described, we proved that ADEM provides the
following authentication property:

Security Property (Authentication). If an endorsed emblem is suc-
cessfully verified then the emblem claims protection for an actually
protected asset that belongs to the organization endorsed.

ADEM provides this property using chains of endorsements that
root in a set of (not all compromised) authorities. Interestingly, and
perhaps surprisingly, authentication does not rely on the security of
an El’'s domain that they use as their OL. We only utilize an EI's OI
to commit to root keys, not to authenticate them. In practice, this
means that ADEM can handle a partial failure of the Web PKI: Even if
the adversary managed to obtain a malicious Web PKI certificate for
the EI's OI, they could only succeed in forging unauthentic claims of
protection if they additionally compromised some authorities” Ols for
which the verifier has no other means of obtaining authentic public
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keys. Recall, however, that it will likely be trivial for, e.g., military units
to obtain at least one authority’s authentic public key, namely their
own country’s public key (Section 5.2.2). Moreover, the fewer external
endorsements an emblem is accompanied by, the less believable it
is. For example, similarly to the CT log infrastructure, we foresee
that emblems will be required to be accompanied by some minimal
number of external endorsements before they are accepted.

The formalization of ADEM’s authentication property is given
in Figure 5.7. The outer implication’s left-hand side encodes that a
verifier received and successfully verified an emblem with an accom-
panying root endorsement from a (proclaimed) EI. The right-hand
side encodes that either the emblem marks a protected asset of that EI
(line 4), or one of our threat model’s assumptions was violated (see
Figure 5.7 for details), or that for all authorities, either their root key
was compromised (lines 14f.) or an unauthentic key was used to verify
their endorsements (lines 16f.).

Accountability

We next present our formalization of ADEM’s accountability prop-
erty, which follows the framework presented in Section 5.4.4. Proving
that ADEM provides accountability was significantly more challeng-
ing than proving that it provides authentication, as it required us
to identify precise and concise conditions of the constraints. Our
accountability property comprises three accountability constraints.

Security Property (Accountability). The following accountability con-
straints specify when we can identify parties as misbehaving:

CA AccouNTABILITY If a domain owner honestly reports a fraud-
ulent certificate issued for their domain and that certificate is
included in a CT log, then the signing CA misbehaved.

AUTHORITY ACCOUNTABILITY If an authority illegitimately endorsed
an EI, the authority misbehaved.

EI aAccouNTAaBILITY If an illegitimate asset is marked as protected,
and an EI endorsed the signing key, the EI misbehaved.

The CA accountability constraint is straightforward, as CT was
designed to provide it. The other accountability constraints go beyond
what CT provides for the Web PKI. They are conceptually similar:
one can blame key holders (authority or EI), when they used their
authentic root key to endorse a malicious key (either as a root or asset
key).

The three constraints’ formalizations are depicted in Figures 5.8-
5.10. The fact Dispute models a party p claiming that a malicious
certificate was associated with their domain. Since it is trivial to claim
that legitimate certificates are fraudulent, we permit the adversary
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All

==>

p log ca d pk skCA #t2 #t3.

// Condition

( (not Ex #a. CompromisedParty(p) @ #a)
// Judge input

& Dispute(p, log, ca, d, pk) @ #t2

& LogInclusion(log, cert) @ #t3)

// Verdict

(Ex #a. CompromisedParty(ca) @ #a)

Figure 5.8: Formalization of CA Accountability. cert is a signed certificate
from CA ca, binding d to pk.

All

pAuth oiAuth rkAuth oi rk id #t1 #t2.

// Condition

( IsRootPK(pAuth, oiAuth, rkAuth) @ #t1

& (not Ex p #x. IsRootPK(p, oi, rk) @ #x)

// Judge input

& AuthEnd(id, oiAuth, rkAuth, oi, rk) @ #t2)
// Verdict

(Ex #a. CompromisedParty(pAuth) @ #a)

Figure 5.9: Formalization of Authority Accountability.

All

p oi rk el assetKey id #t1 #t2 #t3.

// Condition

( IsRootPK(p, oi, rk) @ #t1

& (not Ex e2 #x. IsAsset(p, e2, assetKey) @ #x)
// Judge input

& RootEnd(id, oi, rk) @ #t2

& Emblem(id, oi, el, assetKey) @ #t3)

// Verdict

o ==> (Ex #a. CompromisedParty(p) @ #a)

Figure 5.10: Formalization of EI Accountability.
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. (ALl id oi rk #t. RootEnd(id, oi, rk) @ #t
> ==> UsedRootKey(oi, rk) @ #t) &

4+ (A1l id oiAuth rkAuth oi rk #t.
: AuthEnd(id, oiAuth, rkAuth, oi, rk) @ #t
¢ ==> UsedRootKey(oiAuth, rkAuth) @ #t) &

s (ALl oi rk #t.

9 UsedRootKey(oi, rk) @ #t

0 ==> (Ex ca caSk log cl c2 k #x #y #z.

11 CASk(ca, caSk) @ #x

12 & cl = <'cert’, ca, oi, k>

3 & c2 = <'cert’, ca, <oi, sha256(rk)>, k>
14 & InLog(log, <cl, sign(cl, caSk)>) @ #y
& InLog(log, <c2, sign(c2, caSk)>) @ #z))

Figure 5.11: The above property formalizes that whenever a root key is used
to verify authority or EI endorsements (AuthEnd and RootEnd respectively),
this key must be committed to the CT log infrastructure. c1 and c2 model
the body of the root key binding certificate. We modeled certificates that are
valid for multiple domains using two certificates that are valid for the same
key (here k).

to dispute any certificate and key they like. Thus, our accountability
constraints must assume honest disputes as pointed out above. This
assumption is formalized as the condition that p is not compromised
(line 3 in Figure 5.8). The constraints furthermore assume that the
judge uses the authentic root keys of the blamed authority or EI
respectively (lines 3 and 3 in Figures 5.9 and 5.10 respectively).

cOMPLETENEsSs Completeness as defined by Kiisters, Truderung,
and Vogt ensures that when an accountability constraint’s condition
applies, i.e., a desired security guarantee of a protocol is violated,
the judge makes a verdict. As we discussed in Section 5.4, complete-
ness cannot be achieved against an always-active network adversary.
Nevertheless, we next discuss how our constraints relate to ADEM’s
authentication property.

As per our threat model Assumption 5, we require that parties
monitor CT logs for root keys that are fraudulently associated with
their OI. Thus, verifiers can assume that unrevoked root keys are
authentic. If they were not, the party controlling the respective OI
would have disputed them and revoked the certificates that bind these
keys to their OI. Furthermore, whenever someone uses a party’s root
key to verify an emblem, that root key must be committed to in the
CT log infrastructure, which we formalize as an additional property
in Figure 5.11. Proving this property is straightforward as it follows
directly from the ADEM specification (Section 5.3.4), but it is vital
nonetheless. All the above justifies our constraints” assumption that
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the judge uses authentic root keys to verify authority and EI key
endorsements (lines 3 and 3 in Figures 5.9 and 5.10 respectively).

Suppose an unprotected asset were labeled. Our accountability
property addresses two cases why this could have happened that
are included as part of our authentication lemma. If the EI were
compromised, i.e., maliciously endorsed an asset key (lines 6f. in
Figure 5.7) we can hold it accountable as per EI accountability. Observe
that the judge input in Figure 5.10 matches the outer implication’s
left-hand side of Figure 5.7. Otherwise, if all authorities that endorsed
the EI were compromised (lines 14f. in Figure 5.7), these authorities
could have fraudulently endorsed an EI. In that case, we can hold each
of these authorities accountable as per Authority Accountability. CA
Accountability does not directly relate to our authentication property.
It simply points out conditions under which misbehaving CAs can
also be identified.

Note that a judge still must determine whether a labeled asset in-
deed enjoys protection under IHL or whether an authority maliciously
endorsed an EI. We do not formalize all aspects of this process as it is
rooted in law. In our model, we non-deterministically explore whether
an asset is protected and whether an authority endorsed a legitimate
EI but cannot consider all possible, legal reasons why this might be
the case.

Discussion

DISHONEST DISPUTES  Recall that CA Accountability assumes hon-
est disputes of malicious certificates. In practice, parties could dishon-
estly dispute certificates committing to root public keys in an attempt
to evade being held accountable. For example, Authority Account-
ability holds a malicious authority accountable when the judge sees a
malicious authority endorsement that was signed using the authority’s
authentic root public key. The accused authority could attempt to
contest the constraint’s assumption that the authority’s authentic root
public key was used by disputing it after the fact.

Even in such cases, however, our accountability constraints apply
as parties are required to monitor their OI for maliciously associated
root public keys. In the example above, it could indeed be the case that
the malicious endorsement was signed using an inauthentic root public
key. In both cases, however, the party in question can be held account-
able. Either because it signed the malicious endorsement or because
it did not monitor its OI for maliciously associated root public keys.

MODELING ABSTRACTIONS To support the automation of our for-
mal proofs, our formal model employs abstractions, e.g., regarding
the IP and BGP, DNS, and certificate issuance and revocation. In this
section, we discuss these abstractions and how they affect our findings,
in particular how our results relate to the real-world.
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We assume that parties can obtain authentic CA and CT log keys.
For simplicity, we do not model intermediate CA certificates. This
should not affect our findings, as intermediate certificates would
change our model only in so far that whenever we speak about one
CA now, we would instead need to speak about a set of CAs. In
practice, it would require just a bit more work to determine which CA
precisely was to be blamed in case of misconduct.

In Section 5.5.2, we describe that we modeled CT logs assuming
that they are properly monitored and thus cannot equivocate. When a
CT log equivocates, it misbehaves by providing different clients with
different views of the log. [165] recently showcased how utilizing
anonymous routing, such as the Tor network, can help to avoid the
need for monitoring: If an equivocating CT log cannot see who queries
them, they can only guess when providing different clients with dif-
ferent views, defeating the purpose of equivocation. Thus, we suggest
that verifiers contact CT logs using anonymous routing protocols
should they wish to defend themselves against equivocating CT logs.

Additionally, we do not model CT precertificates, a mechanism that
includes certificates in logs prior to their issuance. Precertificates must
also be signed by the issuing CA and should thus be covered by our
model of standard certificate inclusion. We also do not model internal
endorsements of Els for their own infrastructure and endorsement
constraints as, under Assumption 2, internal endorsements must
always be constrained in such a way that the endorsed key can only be
used for legitimate purposes. Thus, the adversary cannot violate the
authentication property by compromising intermediate or asset keys.

Finally, one additional threat vector to ADEM lies in the IP/BGP
protocols and DNS. Namely, as emblems identify protected assets
via their domain names or IP addresses, an adversary could gain
illegitimate protection by hijacking either the respective DNS records
and have it point to their IP address, or by BGP hijacking an IP address
to have their assets appear as if they were in control of that IP address.
However, such attacks would have to be conducted at a massive scale
as, by the covert inspection property, adversaries cannot know who
wants to attack them. And if they knew who wanted to attack them, it
would make little sense to launch a BGP hijack merely to thwart an
attack: the adversary could instead deploy more targeted, and cheaper
countermeasures, such as dropping all traffic from the adversary.

CERTIFICATE ISSUANCE AND REVOCATION We model CAs as
flawlessly authenticating certificate requests. We do model fraudulent
certificates as we allow CA key compromise, but our model captures
two distinct ways how an adversary might get hold of a fraudulent
certificate in the same way. An adversary can either have access to
a CA’s private key, or they can trick the CA. For example, if they
managed to compromise a party’s DNS entries, they might be able to
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obtain a fraudulent certificate without the CA acting maliciously. As
a consequence, the property that the CA is compromised subsumes
both cases just mentioned in our model. In practice, though, this has
only limited impact as an adversary would still need to compromise
all non-malicious authorities” Ols to associate a fraudulent key with
the Ols or significantly reduce an emblem’s believability by dropping
the endorsements of uncompromised authorities.

As for revocation, we do not consider the publication of fraudulent
certificate revocations. Such revocations constitute a denial of service
attack and ADEM does not provide availability guarantees. Beyond
availability, we can abstract possible misbehavior into two categories.
Either the CA in question does not publish a certificate revocation,
or the offline revocation mechanism does not provide the respective
revocation. In both cases, the party in question might misbehave
intentionally or due to secret key compromise.

In the case of a misbehaving CA, the EI can easily detect this
misbehavior and take actions accordingly (they will see that the re-
vocation was not published). To mitigate the cases of misbehaving
offline revocation mechanisms, verifiers can consult multiple such
mechanisms. In either case, we recommend short-lived root key en-
dorsements to mitigate any kind of key compromise. The short-lived
endorsements can be realized easily as endorsements are neither con-
fidential, nor does resigning require new requests. Authorities could
provide newly signed endorsements regularly and publicly after they
initially approved a request.

5.5.3 Covert Inspection

Covert inspection is independent of authentication and accountability.
Moreover, adversaries trying to violate this property have completely
different motivations: The adversary seeks to distinguish processes
that pay attention to an emblem from those that do not, given a
process’s network transcript and no matter whether it interacts with a
protected or an unprotected asset. In this section, we first explain why
a formal analysis for covert inspection is infeasible, and after provide
a security argument.

One could formalize the idea of covert inspection in a game-based
setting where the adversary is given two processes (one checking
for the emblem and the other not) and tasked with identifying the
one that checks for the emblem. A digital emblem scheme would
then provide covert inspection if there cannot be an adversary that
recognizes the emblem-checking process with a chance non-negligibly
higher than the chance to guess correctly.

Unfortunately, such a definition would be too strong. On the one
hand, there are certain classes of programs that can be trivially recog-
nized as non-emblem checking, for example, any process sending no
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network packets, or programs not using TLS to interact with an asset
only signalling protection via TLS. One would need to rule out certain
classes of “obviously non-emblem checking” processes; however, it is
unclear how one could define such classes without rendering the se-
curity definition tautological. On the other hand, the adversary could
gain a non-negligible advantage over random guessing by checking
if one of the processes sent “non-standard traffic” to the respective
asset. Web-servers, for example, see different “standard traffic” than
database servers. One would need to represent these differences in
typical traffic in the security game, but this would require a classi-
fication of digital assets, and a probability distribution on “typical
interacting processes” for each of these classes. This has, to the best of
our knowledge, not been previously considered in the literature.
Both of these problems put a formal analysis out of reach. Instead,
we analyze what a verifier must do to check an emblem and how these
steps might reveal them. The goal of the verifier is to generate traffic
that “does not stand out” from standard traffic to the respective asset
so that they can hide in a sufficiently large anonymity set of clients
performing standard queries. A verifier will take the following steps to
decide whether a given asset is protected (see Section 5.3.6 and 5.3.7):

¢ Check DNS TXT, A, or AAAA records of a (possibly adversarially
provided) domain name. TXT records may contain tokens, and
A and AAAA records map domain names to IPv4 and IPv6
addresses.

* Check (possibly adversarially chosen) CT logs for the inclusion
of root key-binding certificates.

¢ Send an arbitrary packet to the asset.

¢ Attempt to perform a TLS handshake with one of the ports 443
(HTTPS) or 853 (DNS over TLS).

The first two steps are necessary to check for emblems in DNS
entries and to verify root key setups. To identify a client as emblem-
checking through these two steps requires monitoring the client’s
traffic. This could be done either by an on-path adversary, or because
the adversary controlled the DNS servers or CT logs in question.
However, in both cases, verifiers are unlikely to be detectable or can
take easy steps that reduce the probability of being detected.

Regarding an on-path adversary, traffic to DNS servers and CT
logs is usually encrypted, i.e., one could unlikely determine the true
contents of queries. Additionally, the verifier could use a virtual
private network (VPN) to mask the service they query. Regarding an
adversary who controls DNS servers or CT logs, both types of servers
usually receive so many queries that an adversary monitoring all these
would have a high false-positive rate in identifying verifying clients.
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And this constitutes exactly what the verifier needs: a large anonymity
set. Additionally, the verifier can choose the DNS servers they want to
query, reducing the likelihood that the respective server colludes with
the adversary.

The same reasoning applies to the packets that the verifier must
send to the asset directly. For UDP distribution, we neither require the
verifier to send specific packets nor define the port they must contact,
verifiers (i) will likely query these ports in the intelligence phase of
their planned attack anyway, and (ii) can hide in other traffic that these
ports are likely to receive. These two points apply to TLS distribution
as well. Verifiers only need to attempt to connect to two ports that are
well-known to typically use TLS.

Finally, we recommend that verifiers also perform offline revoca-
tion checks and thereby regularly update these mechanisms. However,
offline revocation mechanisms by their very nature cannot reveal
which certificates the verifier is interested in. Beyond that, mainstream
offline mechanisms are maintained by, e.g., Google for Chromium-
based browsers [45] and Mozilla Firefox [120], which gives verifiers a
large anonymity set of clients to hide in when updating their mecha-
nisms.

5.6 RELATED WORK

In this section, we discuss well-known authentication systems and
highlight their differences to ADEM and how covert inspection relates
to anonymity.

5.6.1 Authentication

AUTHENTICATED DATA STRUCTURES Instead of endorsing Els,
authorities could maintain lists of protected assets by using authen-
ticated data structures, for instance, using transparency systems as
introduced in Section 3.3. With such data structures, however, it is
hard to maintain the covert inspection property. Assets would likely
need to inform clients connecting to them about the logs that they
are included in, e.g., by providing clients with a URL. An adversary
could easily direct clients attempting to verify an asset’s protection to
a honey pot instead of a log. The honey pot would not even need to be
such a log: the mere connection to a URL would inform the adversary
about an imminent attack. At the same time, emblems could not be
removed from protected assets, only invalidated.

To avert the honey pot problem, one could instead aim for a
global directory of protected assets or public keys that are eligible to
claim protection, maintained by consensus protocols, e.g., establishing
Byzantine fault tolerance [94]. This would still not solve the issue
of removing emblems from assets. Even more critically, consensus
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protocols require (by definition) consensus, which cannot be assumed
in the context of a digital emblem: the parties who must reach a
consensus may be at war which each other. To avoid the need for
consensus, one could instead include different parties’ claims about
who enjoys protection, but then one would require an additional
mechanism to authenticate these claims, rendering the addition of
such logs pointless.

ADEM does rely on authenticated data structures, namely the
CT log infrastructure. However, we do not utilize these logs for the
authentication of protected assets but rather for accountability.

CERTIFICATE-BASED AUTHENTICATION In certificate-based ap-
proaches, most notably the Web PKI [46], authorities attest that certain
public keys belong to certain identities. It is clear that adapting the
Web PKI to our purposes would introduce many practical hurdles.
X.509 certificates [29] have different semantics than emblems and en-
dorsements. Additionally, existing CAs can hardly authenticate Els
or authorities as such, and likewise, Els and authorities can hardly
become CAs in the Web PKI.

However, ADEM shares some similarities with the Web PKI or
parts thereof. Internal endorsements resemble proxy certificates in
the X.509 ecosystem [163] (a standard for Web PKI key delegation),
endorsement constraints resemble X.509 name constraints [29], and
altogether, endorsements resemble standard certificates.

In contrast to the Web PKI, we can hold key-holders, i.e., parties
using ADEM, accountable and not just CAs and CT logs. Moreover,
ADEM'’s design centers around the idea that verifiers can choose the
“root CA” (authority) they want to trust, rather than relying on a small
set of “root CAs” that then endorse other authorities.

ADEM'’s trust model does not implement a Web of Trust [40] either,
although ADEM supports certificate chains of arbitrary length and
with arbitrarily many “root CAs.” Authorities endorse Els directly,
and, as there are no other party-to-party endorsements, “certificate”
(endorsement) chains between different issuers always have length
one. Verifiers must choose the authorities they directly trust and do
not “transitively trust” them.

5.6.2  Covert Inspection, Anonymity, and Undetectability

In this section, we compare covert inspection to the definitions of
anonymity and undetectability, two properties that both seem related
to covert inspection. However, neither matches covert inspection.
Anonymity itself is often defined as that a subject of an action
is not identifiable [122]. This definition of anonymity has, e.g., been
applied in the analysis of systems like the Tor network [63], but it does
not suit our needs: It may already suffice for an adversary to know that
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someone verifies an emblem rather than to know who. Depending on
the adversary, though, tools that provide anonymity can still help with
covert inspection, e.g., onion routing could help against an on-path
adversary trying to identify verifiers.

[122] additionally introduces a definition of undetectability: the
“[u]ndetectability of an item [...] means that the attacker cannot suf-
ticiently distinguish whether it exists or not.” This definition is very
similar to covert inspection, but it still does not quite match. ADEM
requires verifiers to make some queries, e.g., the resolution of a DNS
TXT record. An adversary trying to misuse ADEM as a honeypot
might notice the queries themselves. However, the adversary could
not use them to identify verifiers reliably (see Section 5.5.3) because
queries as part of ADEM are “too standard” and would be performed
by many non-verifiers as well.

Undetectability was studied in the analysis of steganography [85,
98], which again has similarities with covert inspection. In steganogra-
phy, two parties try to exchange information over an insecure network
such that an adversary monitoring all traffic cannot detect the presence
of that communication. In contrast, in covert inspection, verifiers (i) do
not send hidden information, and (ii) possibly directly communicate
with the adversary.

5.7 CONCLUSION

In this chapter, we presented ADEM, a design that implements a
digital emblem, enabling the marking of digital assets as protected
under IHL analogously to the physical emblems of the Red Cross,
Red Crescent, and Red Crystal. ADEM is a decentralized design
that provides authentication, accountability, and covert inspection.
Moreover, ADEM can be deployed by Els autonomously and does not
require updating the Internet’s infrastructure. We evaluated ADEM
through a formal and informal security analysis, and through a series
of meetings with domain experts that were conducted in 2021 at the
invitation of the ICRC. Both evaluations show that ADEM is secure
and that it should fit the needs of Els and the ICRC in practice.

FUTURE WORK  We see four directions for future work. First, ADEM’s
security analysis could benefit from improved reasoning about the
completeness of accountability constraints as we presented them in
Sections 5.4.4 and 5.5.2. Probably, this would require adding support
for liveness properties to tools like Tamarin such that judges can be
modelled. Second, our security rationale for covert inspection could be
improved by a formal security argument, which, however, would need
to be developed first. Third, there are attacks that do not interact with
their targets over the network, such as malware in malicious e-mail
attachments or malicious JavaScript. To address this gap “Oblivious

96



5.7 CONCLUSION

Digital Tokens” were proposed, which make digital emblems pre-
sentable on devices to, e.g., malware [104]. ADEM would greatly
benefit from integrating this new way of distributing digital emblems.
Finally, we plan to standardize and deploy ADEM in collaboration
with the ICRC. During the standardization process, which is about
to begin at the IETF, we plan to align all technical details with other
stakeholders. For example, Microsoft has been particularly supportive
of the standardization efforts, but also other major service providers
have joined the efforts.
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AUTOMATED ANALYSIS OF LOOPING
PROTOCOLS



THE CHALLENGE OF LOOPING PROTOCOLS

Proving properties of looping protocols using automated, state-of-
the-art protocol verification tools such as Tamarin and ProVerif, is
notoriously hard. So hard, in fact, that it was commonly believed
that “unbounded (looping) protocols like Signal, and protocols with
mutable recursive data structures [...] are [...] out of scope for sym-
bolic provers [such as Tamarin], without introducing artificial restric-
tions” [19]. Proof techniques such as induction and the use of auxiliary
lemmas, which are supported by Tamarin [111] and ProVerif [26], can
help reduce the proof search space and alleviate some of the non-
termination problems introduced by looping protocols. However,
stating inductive conjectures and useful auxiliary lemmas requires
user ingenuity and expertise, which hampers proof automation.

The complexity of trace induction may be one of the reasons why
it has not yet been applied to the analysis of protocols using double
ratchets such as Signal [58, 91, 110, 121] or iMessage PQ3 [2]. Rea-
soning about such protocols is non-trivial and entails reasoning about
unboundedly many parallel instances of the protocol, where the runs
(two devices sending messages) are themselves unbounded. Previous
works analyzing double ratchet protocols in the symbolic model either
did not consider their looping behavior at all or abstracted it drastically,
for example, by not modeling the inner ratchet [19, 22, 54, 88].

A notable exception is the formal analysis of the message layer
security (MLS) protocol in DY* [161, 162]. While technically not a
double ratchet protocol, MLS generalizes the idea of the double ratchet
to group messaging and is even more complex. DY* builds on the
program verifier F* [153] and uses dependent types. It maintains a
global trace variable that is used to express security properties. DY*
is highly expressive and allows for intricate proof strategies, which
comes at the expense of requiring significant manual interaction as
DY* proofs require user-specified invariants on the global trace that
are strong enough to imply the desired security property.

We would like to provide more proof automation with fewer
auxiliary lemmas. To do so, we present how one can analyze looping
protocols with automated protocol model checkers such as Tamarin
in their full complexity using two induction mechanisms in this part
of the thesis. In Chapter 7, we focus on trace induction and formally
analyze iMessage PQ3 [2], a protocol using a double ratchet that
provides post-quantum security guarantees by integrating quantum-
secure KEMs. Our work shows that symbolic security protocol model
checkers, in particular Tamarin, can verify substantial, real-world
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protocols with nested loops. Our work also shows, however, that using
trace induction in tools such as Tamarin requires user intervention
and insight at many points throughout the proof.

Afterwards, in Chapter 8, we present a novel, cyclic induction
mechanism that substantially improves proof automation, thus simpli-
fying reasoning about looping protocols. We evaluate cyclic induction
by comparing it with trace induction. In particular, we show that mes-
sage secrecy can be proven for Signal without requiring abstractions
or auxiliary lemmas. Our results show that cyclic induction together
with only minimal (and generic) changes to Tamarin’s existing proof
search strategies can prove many lemmas with no or substantially
fewer auxiliary lemmas than needed with trace induction.

6.1 TRACE INDUCTION IN TAMARIN

Before we proceed with the main chapters, we introduce Tamarin’s
trace induction mechanism. Trace induction was introduced in [111],
which established that a property ¢ is valid if and only if the following,
trace-inductive formula is valid:

BC(¢) A (IH(9) = ¢).

The first conjunct, BC(¢), is the base case, and it requires proving ¢ on
the empty trace. The second conjunct, IH(¢) = ¢, is the induction
step, which requires proving ¢ on the last element of the trace, where
¢ is assumed on all previous steps of the trace. BC(¢) and IH(¢) are
defined as follows.

1 if ¢ = f@i
—BC(¢1) if ¢ =91
BC(g) == { BC(¢1) ABC(g2) if ¢ = 91/ ¢2
Ix.BC(¢1) if ¢ = Jx.¢q
L if ¢ is atomic and not f@i
—IH(¢1) if =g

H(pi) ANTH(p2)  if ¢ = 1 A g2
IH(@) := § Ji.IH(¢1) A —last(i) if ¢ = Jiztmp.¢y
Ix.IH(¢1) if ¢ = Jxis.p1, 5 < msg

) if ¢ is an atomic formula

last, as used in the definition of IH(¢), is a special predicate that is

true if and only if it is provided the last time point as argument.
After translating ¢ into its inductive form, Tamarin attempts to

prove it as any other formula. Effectively, it attempts to prove the
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base case and induction step separately. The branch proving the base
case typically leads to a contradiction immediately. As action facts are
replaced with the contradiction symbol 1, syntactic reasoning most
often suffices to derive a contradiction. In the branch proving the
induction step, the induction hypothesis IH becomes available like an
auxiliary lemma.

Example 5 (Loop theory). Consider the following model, which con-
sists of three rules, Start, Loop, and Stop. These rules model a loop
that starts with the generation of a fresh nonce, is executed a non-
deterministic number of times, and may eventually stop.

rule Start:
[ Fr(x) 1
--[ Start(x) ]->
[ A(x) 1]

rule Loop:
[ A(x) 1]
--[ Loop(x) 1->
[ A(x) 1]

rule Stop:
[ A(x) ]
--[ Stop(x) 1->
[]

A simple, obviously true property of the above example is: Every
loop that stops was started earlier. We can formalize this property as
follows:

¢o = Vj, x. Stop(x)@j = 3i. Start(x)@i \i < j.

This property, however, cannot be proven using trace induction. In
general, one can only prove properties of loops by induction when
the loops are expressed in terms of facts that appear repeatedly in
the protocol’s trace. This is not the case for Stop which only occurs
once for every loop, namely when it ends. In the above example, the
induction hypothesis will be:

IH(¢o) = Vj, x.Stop(x)@j = last(j) V (i.Start(x)@i A —last(i) Ai < f)

IH(¢o) is effectively vacuous as long as the fact Stop(x) only oc-
curs at the last time point, which Tamarin must consider as a case
when attempting to prove ¢(. Tamarin will start proof attempts for ¢
by adding Stop(x)@j to the constraint system, which in turn will in-
troduce a rule instance of Stop. As there are no other rule instances oc-
curring later than Stop, Tamarin must consider the possibility that this
rule instance occurs at the last time point. In that case, the first disjunct
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Figure 6.1: Derivation tree for proving ¢; in the Tamarin theory of Example 5
using trace induction.

on the right-hand side of the implication will apply, whereas one usu-
ally requires the second disjunct to apply to make progress on a proof.
Only when we can introduce a new Stop fact in the trace that does
not occur at the last time point can we use the induction hypothesis.

We can, however, prove a very similar property that expresses the
following invariant of loops: For every loop step, the loop must have
started earlier. We formalize this invariant as follows:

@1 = Vj,x. Loop(x)@j = Ji. Start(x)@i N i < j.

One can prove ¢ using trace induction as loop steps are preceded by
other loop steps. Also, when using ¢; as an auxiliary lemma, ¢g can
be proven straightforward and without using trace induction.

When proving ¢; using trace induction, the branch proving the
induction step, i.e.,, IH(¢1) = ¢, results in the derivation tree
illustrated in Figure 6.1. The tree’s root constraint system is I';, which
contains a node constraint and the two formula constraints 1(j) and
IH(¢p1). y(t) is what remains from the negated formula ¢; after
instantiating the Loop fact at timepoint ¢ (as in I'y).

P(t) = Vi.Start(x)@i = (i < t)
IH(¢1) is the induction hypothesis:
IH(¢p1) = Vj, x.Loop(x)@j = last(j) V (Ji.Start(x)@i A —last(i) Ai < j)

To continue the proof search, we solve the open A premise of the
node at timepoint j. As the loop step could have been preceded by
either the start of the loop or another loop step, this leads to two
cases I'y; and I'p;. The presence of the Start node in I'y; immediately
contradicts the formula ¥(j). In the case I'z, the induction hypothesis
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now becomes useful as there is a Loop fact at a time point vr that cannot
be the last. Tamarin detects this and applies the induction hypothesis
automatically, which introduces the node Start at time point i. This
again contradicts ¢(j) as i <r,, vr <r,, j and concludes the proof.

The above examples show that induction can only be applied to
formulas that express invariants of loops, but not to formulas that
express something that holds after a loop has stopped. For this reason,
induction must be applied with care and cannot be blindly applied to
prove arbitrary properties of protocols with loops.



A FORMAL ANALYSIS OF APPLE’S IMESSAGE PQs3
PROTOCOL

7.1 INTRODUCTION

In this chapter, we show how symbolic security protocol model check-
ers, in particular Tamarin, can verify substantial, real-world protocols
with nested loops in their full complexity by using trace induction as
introduced in Section 6.1. We do so by presenting the formal analysis
of Apple’s advanced, widely deployed iMessage PQ3 Messaging Pro-
tocol, or PQ3 for short. PQ3 is used across all of Apple’s devices for
device-to-device messaging and underlies many other Apple services,
e.g., iMessage, FaceTime, HomeKit, and HomePod hand-off. PQ3 is
designed to be performant and offers strong guarantees against power-
ful adversaries, including those who may possess quantum computers
in the future.

PQ3 employs a double ratchet algorithm similar to Signal [121].
The protocol takes a hybrid approach to security and combines classi-
cal cryptographic primitives, like ECDH, and post-quantum primitives,
namely ML-KEM [117], a module-lattice-based KEM. The hybrid con-
struction means that PQ3’s security does not solely depend on the
security of post-quantum primitives, which are less well understood
than their classic counterparts. Moreover, PQ3’s integration of hybrid
cryptography into the double ratchet provides stronger guarantees
than Signal, where a post-quantum KEM is just integrated into the
protocol’s setup phase, but not into its ratcheting.

We report on our Tamarin model of PQ3, the adversary assump-
tions, and the protocol’s desired properties. We use Tamarin’s spec-
ification language to specify the messaging protocol and its use of
classical and post-quantum cryptography. We also specify all forms
of adversary compromise, including the event in which the attacker
obtains a quantum computer sufficiently powerful to break all non-
post-quantum-secure cryptographic primitives. Essentially, the adver-
sary can compromise any key at any time, either through dedicated
key-reveal rules or because they obtained a quantum computer. Using
Tamarin’s property language, we formalize and prove both secrecy and
authenticity theorems. These theorems precisely express the protocol’s
security guarantees capturing fine-grained notions of key compromise.

Our analysis establishes that PQ3 provides strong security guar-
antees against an active network adversary that can compromise any
secret key, unless explicitly stated otherwise. For example, PQ3 pro-
vides forward secrecy, post-compromise security, and post-quantum
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security with respect to a “harvest now, decrypt later” adversary. In
contrast to Signal, PQ3 provides post-compromise security also against
active classical and “harvest now, decrypt later” adversaries and not
only against passive, classical adversaries. Moreover, the fine-grained
analysis of compromise possibilities and their effects is useful for guid-
ing secure implementations of PQ3. For example, the compromise of
a participant’s long-term identity key impacts all security guarantees
and thus should be stored with extra care, for example, in a device’s
secure enclave.

CONTRIBUTIONS  Our first contribution is the formalization and
machine-checked verification of PQj3 to prove all our security claims.
Namely, we use Tamarin to prove that PQ3 offers strong security
guarantees against a powerful adversary with quantum computing
capabilities. These guarantees are fine-grained and comprehensive in
that omitting any of the many adversary compromise cases leads to
attacks. Our verification thereby provides a formal, machine-checked
proof that PQ3 meets the high expectations for a modern device-to-
device messaging protocol. This high assurance is important given the
prominent role of this protocol, which is used in billions of devices
worldwide, and its limited prior analysis.

Our second contribution is to show that symbolic model checkers
such as Tamarin can be used to analyze complex looping protocols
like iMessage PQ3 or Signal without introducing artificial restrictions.
It was previously argued that protocols using double ratchets are out-
of-scope for modern, symbolic model checkers such as Tamarin, as
they cannot handle the protocol’s nested loop and a complex control
structure [19]. Our work shows that this is not the case.

OUTLINE In Sections 7.2 and 7.3 we describe PQ3’s threat model,
requirements, and the protocol itself. In Section 7.4 we present and
discuss our Tamarin model of PQ3, the adversary, the protocol’s
properties, and details on our proofs. We discuss related work in
Section 7.5 and draw conclusions in Section 7.6.

7.2 REQUIREMENTS AND THREAT MODEL
7.2.1 Security Requirements

SECRECY PQ3 was designed to provide strong secrecy guarantees,
namely message secrecy, forward secrecy, and post-compromise security.
Message secrecy means that as long as neither participants’ session
states are revealed, the adversary cannot learn any of their exchanged
messages. Forward secrecy and post-compromise security limit the
window in which an adversary can learn exchanged messages after
they compromise certain parts of the session state.
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More concretely, forward secrecy limits the effect of compromise
in the past. Should the adversary compromise some state now, they
cannot learn previously sent messages. Post-compromise security
limits the effect of compromise in the future. Should the adversary
compromise some state now, they cannot learn messages sent after the
compromise. Noteworthy, forward secrecy and post-compromise secu-
rity are usually not granted immediately. Typically, the adversary will
be able to access some but not all messages sent before or after a com-
promise, and the precise guarantees depend on the state considered
to be compromised. Similarly, protocols typically provide forward
secrecy and post-compromise security only with respect to certain ad-
versary assumptions. Signal, for example, provides post-compromise
security in its outer ratchet only against passive adversaries.

There exists no standard, formal definition of forward secrecy
and post-compromise security. [49] present a formal notion of post-
compromise security, but they focus on post-compromise security
with respect to long-term key compromise and do not consider other
types of key compromise. In our security analysis, we define a secrecy
lemma that captures all three notions of secrecy and that addresses the
precise implications of partial session state compromise. Describing
this fine-grained secrecy lemma requires a detailed understanding of
the key material used in PQ3, and is thus deferred to Section 7.4.2.

AUTHENTICATION AND REPLAY PROTECTION A message recip-
ient can identify the message’s sender. We formulate this as an agree-
ment property as introduced in Section 3.1: the recipient and sender
agree on their view of the message. For any message received, the peer
must have actually sent the, intending it to go to the receiver, and both
peers agree on their view of the message. Moreover, this agreement is
injective. Namely, a given message is only accepted once by the recip-
ient; hence the protocol provides replay protection. Again, we defer to
Section 7.4.2 for a precise definition of our authentication guarantees.

7.2.2 Threat Model

PQ3 seeks to provide the above security properties even when the pro-
tocol is run in the presence of a strong active network adversary who
may have access to a powerful quantum computer in the future. As an
active network adversary, the adversary can read, reorder, intercept,
replay, and send any message to any participant. We assume though
that devices use strong randomness and that, short of possessing a
quantum computer, the adversary cannot factor large numbers or
compute discrete logs. Hence, in the pre-quantum era, cryptographic
primitives like ECDH are secure against the adversary.

By default, the adversary can access every participants” key mate-
rial unless we explicitly forbid this. We will refine our threat model
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for each security property and list all the keys that the adversary must
not access for the security property to hold. This allows us to focus
on which key material the adversary must access to violate a security
guarantee and to abstract from whether this compromise is plausible.
For example, recently developed cryptographic primitives, designed
to provide post-quantum security, may turn out to be flawed. Some
keys are stored in a devices’ main memory and relatively easy to
compromise, whereas others, like identity keys, are stored in Apple’s
Secure Enclave and are thus much harder to compromise. The fact the
adversary can access every key by default allows us to consider all of
these cases.

In addition, our threat model accounts for the possibility that the
adversary may at some point possess a cryptographically-relevant
quantum computer. When this happens, the adversary will be able to
break all non-post-quantum-secure primitives, such as ECDH, and can
access all such secret key material, independently of what a refined
threat model may state.

We constrain the adversary’s future quantum computing capabili-
ties by assuming that as soon as the adversary possesses a quantum
computer, no honest participant runs the protocol. This models an
adversary that anticipates future developments in quantum comput-
ing and stores all messages sent by the protocol participants. For this
reason, the adversary is a passive quantum attacker and is referred to
as a “harvest now, decrypt later” adversary."

For setup and session establishment, the protocol leverages Apple’s
IDentity Services (IDS) key directory. We assume that this directory
is secure in that it only distributes the participants” authentic public
keys. The problem of key authentication is orthogonal to PQ3. We
discussed it in Part i and Apple recently addressed it for iMessage
with their rollout of a key transparency log [1].

7.3 PQ3 MESSAGING PROTOCOL

PQ3 is a device-to-device messaging protocol where either device can
asynchronously exchange messages at any time, independent of the
connection status of their peer’s device. We first describe PQ3 at a
high-level of abstraction, followed by a more detailed account. We
provide a full pseudocode specification of PQ3 in our artifact (see
Section 1.6).

Note that PQ3 only protects past sessions against quantum attackers. To protect active
sessions, PQ3’s relies on an elliptic curve signature scheme, which can be broken by
a quantum computer.
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7.3.1  High-level Account

In PQ3, communication between two parties, say Alice and Bob, works
roughly as follows. Suppose that Alice wants to initiate messaging
with Bob.

1. Alice queries Apple’s IDS for Bob’s pre-key material and a long-
term identity public key.

2. Alice derives an initial root key, chain key, and message key. Alice
encrypts her first message for Bob using the message key and
sends Bob the ciphertext along with a signature and the key
material necessary to derive the initial root key.

3. Upon receiving this new message, Bob lacks the key to decrypt
the ciphertext, and so he must derive it. Bob first queries the IDS
to verify Alice’s long-term identity public key and checks the
received signature. He uses the key material received from Alice
to derive the initial root, chain, and message key and decrypts
the initial message. Alice and Bob have now established a shared
session.

4. As long as the session does not change direction (i.e., the current
sender keeps sending messages), both parties perform symmetric
ratcheting. In the symmetric ratchet, participants use the old
chain key to derive a new chain and message key.

5. Whenever the session changes direction (i.e., the current receiver
wants to reply), both parties perform public-key ratcheting. In the
public-key ratchet, participants use the old root key and newly
sampled asymmetric key material to derive a new root key.

At this high level of abstraction, Steps 2—5 resemble the standard
double ratchet. But there are significant differences in the concrete
details on how the ratchets are performed, in particular how a post-
quantum KEM is integrated into the ratcheting.

7.3.2  More Detailed Account

We now expand on the above account. Although this account is more
detailed, we still focus on the essential ideas and we omit some low-
level details, like message and key derivation tags. Moreover, we
describe some additional features of PQ3 at the end of this section.

KEYS Every participant has a long-term identity key, a P-256 ECDSA
public/private key pair to authenticate messages and other key mate-
rial. Long-term identity public keys are distributed and authenticated
using the IDS. All other keys are used to derive message keys. Fig-
ure 7.1 depicts the dependencies between these keys.
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Figure 7.1: Dependency between the keys used by PQ3. Arrows denote that
one value is used to derive another. The lock icons denote KEM encapsulation
or decapsulation respectively. Sometimes a zero-byte sequence is used
instead of a root key or KEM shared secret.

We start by introducing PQ3’s three types of symmetric keys. These
symmetric keys are derived with respect to a given public-key ratchet
step (identified by i in Figure 7.1). Message keys (depicted as mk;) are
the message encryption keys and are derived from chain keys (depicted
as ckjp/1). Chain keys are derived from either previous chain keys
or initially from the same entropy sources as the root keys. Root keys
(depicted as rk;/; ;1) are used in every public-key ratchet step and, in
particular, maintain the entropy from previous public-key ratchets.

Root and initial chain keys are derived from three entropy sources:
the session’s previous root key (or a zero-byte sequence upon session
start; rk; in Figure 7.1), an ECDH shared secret (“DH” in Figure 7.1),
and optionally a KEM shared secret (replaced with a zero-byte se-
quence when omitted; “KEM SS” in Figure 7.1). To establish these
shared secrets, every client uses P-256 ECDH public/private key pairs,
which we call ECDH keys, and ML-KEM 768 or 1024 public/private
key pairs, which we call KEM keys. Clients establish the ECDH shared
secret by combining an ECDH public key from their peer with their
own ECDH private key (“ECDH Pub/Priv” in Figure 7.1). Clients
establish the KEM shared secret either by encapsulating it for their
peer using their peer’s KEM public key or by having their peer encap-
sulate it for them and decapsulating it with their own KEM private
key (“KEM Pub/Priv” in Figure 7.1).

In general, every client uses distinct, fresh ECDH and KEM keys
for every session, the public part of which they send in PQ3 messages
to their peer. These session-specific keys are called ephemeral keys.
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Figure 7.2: PQ3’s public-key ratchet. Each block 1-4 illustrates a public-key
ratchet step. We omit the symmetric ratchet; chain and message keys are
derived from the output of the HKDF (denoted by “...”). In Step 1, Alice
initiates a session with Bob and uses pre-key material (white box) to derive a
root key. Alice sends a freshly encapsulated shared KEM secret (lock icon),
and a freshly sampled ECDH public key to Bob that Bob can use to derive
session keys. New KEM shared secrets are only encapsulated and shared
when a new KEM public key was sent in the previous public-key ratchet (see
block 4). Orange/gray key pairs denote ML-KEM keys, green/blue key pairs
denote ECDH keys. This figure was inspired by [121].
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Ephemeral keys are short-lived and used only for a specific session.
To support asynchronous messaging, clients use ECDH and KEM
public pre-keys instead of their ephemeral counterparts upon session
start (the ECDH and KEM keys depicted in Figure 7.1 could be either
ephemeral or pre-keys). Clients upload their pre-keys to the IDS using
timestamped pre-key bundles, which are signed with their long-term
identity key. Clients can fetch their peers’ pre-keys from the IDS to
start a new session with any of their peers’ clients without requiring
that client to be online. Pre-keys can be reused in multiple sessions, but
are only used upon session start. PQ3 uses ML-KEM 768 key pairs for
ephemeral KEM keys and ML-KEM 1024 key pairs for KEM pre-keys.

SESSION ESTABLISHMENT In the following, we assume, as before,
that Alice wishes to establish a new session with Bob. We depict
an example run of PQ3 in Figure 7.2, specifically showing the key
derivations of both parties. The figure shows four public-key ratchet
steps (numbered 1-4). Step 1 illustrates session establishment as
explained next. Note that all messages sent between parties include a
signature by the respective sender for authentication purposes using
their long-term identity key. We omit signatures, long-term identity
keys, the steps of the symmetric ratchet, and sent messages from
Figure 7.2 to avoid clutter and to focus on the key material used in
root key derivation.

Alice’s actions are depicted in the left, blue half of Figure 7.2. Alice
initiates her session with Bob by performing an IDS query for Bob’s
identity. Alice thereby learns three keys from the query’s result: Bob’s
long-term identity public key, an ECDH public pre-key, and a KEM
public pre-key. Querying and using pre-keys is depicted within the
white box in Figure 7.2. Alice then generates a fresh ECDH ephemeral
public/private key pair (“Priv/Pub” in Step 1) and encapsulates a
fresh KEM shared secret with Bob’s public pre-key (lock icon in Step 1).
The encapsulation algorithm provides Alice with the cleartext KEM
shared secret for her use (shown as “SS” in Step 1), and ciphertext to
be given to Bob (the lock to the right of “SS”, showing that it used
the KEM public pre-key from above). Bob can decapsulate the KEM
shared secret with his KEM private pre-key to receive the same KEM
shared secret. Alice then combines her ECDH ephemeral private key
with Bob’s ECDH public pre-key to obtain the initial ECDH shared
secret (depicted as “DH”).

Alice proceeds to derive the initial root key and the associated
initial chain key from the ECDH shared secret, the KEM shared secret,
and a zero-byte sequence, which stands in for the previous root key.
This is depicted on the far left of Figure 7.2 as “THKDF” in Step 1. She
derives a message key from the initial chain key and encrypts her
initial message with that message key. She sends Bob the ciphertext,
her ECDH ephemeral public key, the KEM encapsulation (with the
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latter two shown in Figure 7.2), a hash of Bob’s public pre-keys (the
pre-key hash), and a signature on all these elements and some additional
authenticated data. The exact values of the authenticated data field
are unspecified, and the field can be used freely by applications.

Bob uses that message to derive the initial root and chain key.
Bob’s actions are depicted in the right, green half of Figure 7.2. Bob
first performs an IDS query to receive Alice’s long-term identity public
key (not depicted in Figure 7.2), which he uses to verify the message
signature. Bob then looks up the private parts of his pre-keys used by
Alice, which are identified by the pre-key hash. Bob decapsulates the
KEM encapsulation to obtain the KEM shared secret (the open lock
symbol in Step 1), and combines Alice’s ECDH public ephemeral key
with his ECDH private pre-key to establish the ECDH shared secret
(“DH” in Step 1). With these two values (and the zero-byte sequence),
Bob computes the initial root and chain key (illustrated by “HKDEF”
in Step 1) and derives a message key from that chain key to decrypt
the ciphertext.

SYMMETRIC RATCHET With a shared root key established, Alice
can send any number of additional messages to Bob without the par-
ticipants updating the root key. Nevertheless, each of these messages
will be encrypted with a distinct key derived by symmetric ratcheting.
Whenever a participant encrypts a message, they use the current chain
key to derive a message key, and then ratchet the chain key forward
by deriving a new chain key from the previous one. PQ3 establishes
per-message forward secrecy as soon as the previous chain and mes-
sage keys are deleted, i.e., participants should only store the latest
root and chain key. The symmetric ratchet, though, is only executed
as long as the conversation’s direction does not change, i.e., as long
as the current sender keeps sending. Whenever the current receiver
wishes to respond, they perform a public-key ratchet instead.

PUBLIC-KEY RATCHET Suppose, after receiving some messages
from Alice, that Bob wants to reply. This means that the conversation
changes direction, and whenever this happens clients perform the public-
key ratchet. Every public-key ratchet updates the root key and derives
a new, initial chain key. The steps taken to derive these new keys are
similar to the steps taken during session establishment. Figure 7.2
illustrates (next to session establishment) three further public-key
ratchet steps (numbered 2-4).

To perform the public-key ratchet, Bob first generates a fresh ECDH
ephemeral public/private key pair. Depending on the conversation’s
state, Bob may additionally perform either of the following two actions:
(i) use the encapsulation algorithm to produce a new KEM shared se-
cret and ciphertext (for decapsulation by Alice), or (ii) generate a new
KEM ephemeral public/private key pair. Action (i) is performed when-
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ever Bob’s peer, Alice, performed Action (ii) in the previous public-key
ratchet. To save bandwidth, Action (ii) need not always be performed.
Instead, a custom heuristic determines when a client refreshes its KEM
keys. The heuristic accounts for the threat environment, performance,
and other requirements. As per iOS 17.4, PQ3 clients send a fresh
KEM public key roughly every 50 messages or whenever they have
not sent a fresh KEM public key within a week [81].

Bob then derives the next root key and the associated initial chain
key. He first combines his freshly generated ECDH ephemeral private
key with Alice’s ECDH ephemeral public key to obtain the new ECDH
shared secret. He then uses the previous root key, the new ECDH
shared secret, and either the new KEM shared secret or a zero-byte se-
quence (depending on whether Bob performed Action (i)) to derive the
next root key and associated initial chain key. He again derives a mes-
sage key from that chain key to encrypt his message and sends Alice
the following values: the ciphertext, his fresh ECDH ephemeral public
key, optionally the new KEM encapsulation (Action (i)), optionally his
new KEM public key (Action (ii)), and a signature on all the above.

Figure 7.2 depicts in Step 3 that Alice generates a new ephemeral
KEM public/private key pair and sends the corresponding public key
to Bob, i.e., Alice executes Action (ii) above. This means that Bob will
execute Action (i) in Step 4.

Overall, the cryptographic constructions used are hybrid: all key
derivations incorporating a KEM shared secret also involve classical
secrets. This design entails (and we establish this formally in our
proofs) that PQ3'’s security is at least as strong as when using classical
cryptography alone. The repeated use of the KEM encapsulation
in the protocol therefore strictly strengthens the protocol to provide
post-compromise security even against a “harvest now, decrypt later”
adversary who managed to access some KEM shared secret.

7.4 SECURITY PROOFS

In this section, we describe how we modeled PQ3 and formalized
its security goals using Tamarin. We describe our protocol model
(Section 7.4.1), the formal security properties (Section 7.4.2), and our
proofs (Section 7.4.3). Our protocol model covers PQ3 in its full
complexity, including its nested loops, all its cryptographic primitives,
and their combinations. We discuss limitations and proof effort in
Section 7.4.4.
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UserKeyGen QueryIDS

SessionStartAsSender ReceiverStart

ReceiveSymmetricRatc
het

SendSymmetricRatchet Session

PKRatchetNewSender PKRatchetNewReceiver
SomeNewKemSS SomeNewKemSS

PKRatchetNewSender PKRatchetNewReceiver
NoNewKemSS NoNewKemSS

PQAttacker

Figure 7.3: Overview of our formal model. Rectangles denote rules and
ellipses denote facts, with their respective name printed inside. Arrows
denote fact consumption and generation or rule transition. The white rect-
angle around Some/NoFreshKemSk denotes that either of the rules is applied
non-deterministically. The rule PQAttackerStart can be applied at any point.
When this happens, protocol execution halts (modeling a “harvest now, de-
crypt later” adversary) and thereafter the rule PQAttacker can be applied,
which reveals any non-post-quantum-secure secret to the adversary. This
figure omits rules that reveal key material.
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7.4.1  Protocol Model

Multiset-Rewriting Rules

We used Tamarin to comprehensively model PQ3 as described in
the previous section. We provide an overview of our model’s state
transition rules in Figure 7.3. Our formal model has three parts. The
tirst part models the generation of long-term signing keys and pre-
keys (rule UserKeyGen), and IDS queries (rule QueryIDS). These are
setup rules, which are the same for all participants, independent of
whether they start a session as the sender or receiver. The second and
third part model the adversary’s capabilities and PQ3’s protocol flow
respectively.

In our model of the adversary’s capabilities, we allow the adversary
to compromise every private, root, chain, and message key through
dedicated reveal rules, unless our security lemmas explicitly forbid a
certain key to be revealed. Additionally, we model the “harvest now,
decrypt later” capability as follows. Whenever participants generate a
non-post-quantum-secure key, like a fresh ephemeral ECDH private
key, our model saves the key in a persistent fact (i.e., a fact that is not
consumed when it is used in a rule’s premise). The adversary can
then access any secrets stored this way after the rule PQAttackerStart
is applied, but from that point on, no honest participant runs PQs3.

Our model of PQ3'’s protocol flow is depicted as the big blue box in
Figure 7.3. The left-hand side depicts all sender-related rules, the right-
hand side all receiver-related rules, and in the center is a Session fact
that stores all information needed to send and receive messages. For
example, a Session fact stores a participant’s most recently generated
ECDH and KEM private keys and the corresponding public keys of
their peer, as well as any derived root and chain keys.

A new session is started by applying the rule ReceiverStart or
SessionStartAsSender. These are the only two rules that only pro-
duce and do not consume a Session fact. Most other rules update a
session, i.e., they consume and produce a Session fact, and they can
be applied arbitrarily many times per session. After a new session
has started, one of two things can happen. Either the conversation
does not change direction and then both participants will apply the
symmetric ratchet rules, or the conversation changes direction and the
public-key ratchet rules are applied.

When being the receiver, a participant may non-deterministically
choose to become sender. When they do, they perform the public-key
ratchet. Depending on whether their peer had sent them a new KEM
public key previously, they may additionally encapsulate a new KEM
shared secret. Also, the new sender may non-deterministically send a
new KEM public key themselves to their peer.

A participant changes from the sender to the receiver role when
they receive a new message while being in the sender state. When a
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functions: hkdf/2, suffix/1, prefix/1, concat/2, h/1

; equations: concat(prefix(x), suffix(x)) = x

4

6

functions: pqpk/1, encap/2, decap/2
equations: decap(encap(k, pgpk(sk)), sk) = k

functions: default/2, Just/1l, None/0O, unjust/1

equations: default(Just(v), t) = v,
default(None, v) = v,
unjust(Just(t)) =t

Figure 7.4: Custom functions and equations defined in our formal model.

participant becomes the receiver, they perform the public-key ratchet
as well. In one of the two rules, they do so using a decapsulated KEM
shared secret, and in the other rule they use a zero-byte sequence
instead.

Intuitively, one can consider our model as implementing two
nested loops. First, there is the outer, public-key ratchet loop where
participants generate new ephemeral ECDH and KEM secret keys
and derive root and chain keys. Second, there is the inner, symmetric
ratchet loop where participants derive message keys and send mes-
sages. The symmetric ratchet loop always runs within one iteration of
the public-key ratchet loop.

Equational Theory

Our model uses Tamarin’s built-in equational theories for signing,
symmetric encryption, and Diffie-Hellman key exchange. These re-
spectively model digital signatures, symmetric encryption under mes-
sage keys, and ECDH key exchanges. We additionally use Tamarin’s
natural numbers theory to model message counters.

In addition to these built-in theories, we specify some custom
functions and equations, shown in Figure 7.4. First, we specify the
functions hkdf, suffix, and prefix for key derivation. The function
hkdf models an HMAC-based key derivation function (HKDF) [90]
and takes two arguments: the first is the source of entropy and the
second is a domain-separating tag or salt. The prefix and suffix
functions are used for chain and root key derivations, which are
derived by splitting a bit-string into a prefix and suffix of equal length.
The function concat allows one to recover a value given its prefix
and suffix. We do not need to use concat in the rules modeling the
protocol roles of regular parties in our model, but the adversary can
use it to reconstruct a value from the prefix and suffix. Additionally,
we specify the unary function h to model the pre-key hash used during
session establishment, see Section 7.3.
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The functions pgpk, encap, and decap model KEM encapsulation
and follow the standard symbolic model for asymmetric encryption.
Finally, we use the wrapper function Just and the constant None
to model optional values. The function default (together with the
accompanying equations) unpacks an optional value or replaces it with
a default. For example, we use Just and None to wrap values that are
only sent optionally, e.g., the pre-key hash. The function unjust allows
the adversary to access the contents of any Just value they intercept.

7.4.2  Properties Specified and Proven

Secrecy

PQ3 aims to satisfy three secrecy properties: message secrecy, forward
secrecy, and post-compromise security. We formalize all three prop-
erties as a single lemma, which we depict in Figure 7.5.> The lemma
states that the adversary cannot know a message (line 5) that has been
previously sent (line 3), unless the adversary succeeds in at least one of
four kinds of compromise, listed below. The kinds of compromise are
formulated with respect to the keys referenced by the Keys fact. This
fact lists all keys and shared secrets used by the sender when sending
the respective message, e.g., their most recently sampled ephemeral
ECDH public key (myEcdhPk) and the most recently encapsulated KEM
shared secret (kemSS). We sketch a possible attack for each kind of
compromise to show that dropping any but the first disjunct yields
a counterexample. To learn a message sent with PQ3, the adversary
must compromise at least one of:

* The message key used during encryption from either the receiver
or sender (lines 6-7 in Figure 7.5). Should the adversary learn the
message key, they could simply decrypt the message themself.

* One of the chain keys used in the symmetric ratchet to derive
the message key from either the receiver or sender (lines 8-11).
Should the adversary learn one of these chain keys, they could
simply derive the message key themself.

¢ The recipient’s long-term identity key before the message msg
was sent (line 12). In this case, the adversary could generate a
fresh ECDH ephemeral and KEM encapsulation key and send
them to the messaging partner in question. This attack allows
the adversary to carry out all communication in their victim’s
stead.

2 In the following, we will sometimes shorten the names of facts in lemmas compared
to the source files, e.g., RevealIdentityKey may become RevealIDKey. We also omit
some irrelevant variables and replace them with _. These variables are understood to
be quantified by the innermost quantifier.
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* One of the ephemeral ECDH secret keys, used to derive the
most recently established ECDH shared secret, and the KEM
shared secret (lines 13-24). This allows the adversary to perform
a public-key ratchet step themself.

The adversary can learn an ECDH secret key either through
direct compromise (lines 14-16) or using a quantum computing
attack should a sufficiently powerful quantum computer be
available (line 13). The compromise of the sender’s ECDH pre-
key has no effect because a sender will always sample a fresh
ECDH ephemeral key upon session start.

The KEM shared secret can be effectively compromised in two
ways. First, the adversary can compromise the KEM secret key
used for encapsulation (lines 17-20). Second, the adversary can
circumvent the need to compromise the KEM shared secret by
compromising a root key derived after that KEM shared secret
was established (lines 21-24). In the latter case, if the adversary
additionally learns an ECDH secret key used in a subsequent
public-key ratchet step, they can derive the respective initial
chain key themself.

In addition to the ECDH and KEM shared secret, the adversary
also requires the root key from the previous public-key ratchet
to perform the current public-key ratchet themself. Our threat
model, however, permits this root key to be revealed to the
adversary anyway.

Recall that our threat model assumes that the adversary can access
all key material unless explicitly forbidden. Our secrecy lemma only
forbids the adversary to access key material related to sending the
message in question. All key-reveal assumptions in lines 6-24 use the
key material introduced in line 4, which in turn is bound to the Sent
event in line 3 by the variable #t. Thus, proving secrecy establishes
forward secrecy and post-compromise security as we explain next.

For long-term identity keys, we show that PQ3 provides forward
secrecy in that all messages exchanged prior to the compromise of such
a key remain secure (see line 12). For most encryption keys (exceptions
and details below), we establish forward secrecy and post-compromise
security in that to compromise a given message, the adversary must
learn the respective key used for that message and the compromise of
past or future keys has no effect. Note that “past” and “future” here
refer to the points in time when a key was used, not when it was com-
promised. In particular, this allows us to establish post-compromise
security guarantees even after the adversary obtained a quantum
computer and participants stopped running the protocol. Although
participants will no longer rotate keys, as they no longer run the pro-
tocol, they will have self-healed from the compromise of any other key
than the most recently used one. For an illustration, see Figure 7.6.
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All id me them msg ad myEcdhPk theirEcdhPk kemSS encapPk
rk ck mk #t.
( Sent(id,_,me,them,msg,ad) @ #t
& Keys (myEcdhPk, theirEcdhPk, kemSS, encapPk, rk, ck,mk) @ #t)
=> (not Ex #x. K(msg) @ x)
| (Ex #x. RevealMessageKey(me,mk) @ #x)
| (Ex #x. RevealMessageKey(them,mk) @ #x)
| (Ex ckC #x. RevealChainKey(me,ckC) @ #x
& (ckC << ck | ckC = ck))
| (Ex ckC #x. RevealChainKey(them,ckC) @ #x
& (ckC << ck | ckC = ck))
| (Ex #x. RevealIDKey(them) @ #x & #x < #t)
( (Ex #x. PQAttack() @ #x)
| (Ex #x. RevealECDHPreKey(them,theirEcdhPk) @ #x)
| (Ex #x. RevealECDHKey(id,me,myEcdhPk) @ #x)
| (Ex #x. RevealECDHKey(_,them,theirEcdhPk) @ #x))
& ( (Ex #x. RevealKemKey(me,encapPk) @ #x)
| (Ex #x. RevealKemKey(them,encapPk) @ #x)
| (Ex #x. RevealKemPreKey(me,encapPk) @ #x)
| (Ex #x. RevealKemPreKey(them,encapPk) @ #x)
| (Ex k #x. RevealRootKey(me, kemSS,k) @ #x
& k << rk)
| (Ex k #x. RevealRootKey(them, kemSS,k) @ #x
& k << rk)))

Figure 7.5: Secrecy lemma. The lemma formalizes that if a message msg
was sent using the keys referenced by the Keys fact, then either the message
cannot be known by the adversary (line 5) or the adversary compromised a
specific combination of keys (lines 6ff.). Section 7.4.2 explains this lemma,
line-by-line, in further details.

Key Usage &—o¢—@¢——————@-————-
kqy k, ks ky

! #

t t2

Key Compromise

Figure 7.6: A participant derives four initial chain keys (ki-k4) over time
and the adversary compromises k, and k3 at times f; and t, respectively.
Independent of when it occurs (compare t; with t;), key compromise has a
similar and limited effect: The adversary can only learn messages sent before
the next initial chain key is derived (the shaded areas).
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All id ecdhKeyl ecdhKey2 m #t1 #t2 #t3.

( Keys(ecdhKeyl, ...) @ #t1

& SessionInfo(id, ...) @ #t1
& K(ecdhKeyl) @ #t2

& Keys(ecdhKey2, ...) @ #t3

& Sent(id, ..., m, ...) @ #t3
& #t3 < #t1)

==> (not Ex #x. K(m) @ #x)
| (...) // as in secrecy lemma

Figure 7.7: Sketch of a potential formalization of ECDH key forward secrecy.
Observe that this property is strictly weaker than our secrecy lemma in
Figure 7.5 because we only add conjuncts to the implication’s left-hand side.
Thus, this formalization of forward secrecy is implied by our secrecy lemma.

To provide an example for why our secrecy lemma entails forward
secrecy and post-compromise security, consider the lemma modeling
ECDH key forward secrecy in Figure 7.7. The lemma resembles
our secrecy lemma in Figure 7.5, but additionally assumes that the
adversary learned an ECDH key derived before the current message
was sent. This modified lemma accurately models ECDH key forward
secrecy, but it is strictly weaker than our secrecy lemma. Formally,
this is the case because we only strengthen the implication’s left-hand
side. We also cannot drop any disjunct on the implication’s right
side because, if we could, our secrecy lemma would not be provable
(we sketched attacks on the previous page). Intuitively speaking, the
adversary does not gain more power when we explicitly add the event
that they learn a respective ECDH key to the trace because we assume
that the adversary can access all keys by default anyway.

In general, we establish forward secrecy and post-compromise
security guarantees upon key rotation. For some keys, forward se-
crecy and post-compromise security are only established under further
constraints. In these cases, our secrecy lemma precisely defines the
point in time at which forward secrecy or post-compromise security
are established. We list all forward secrecy and post-compromise se-
curity guarantees entailed by our secrecy lemma below and, wherever
necessary, describe the constraints on these guarantees. When the
adversary does not possess a quantum computer, PQ3 provides:

* Long-term identity key forward secrecy.

¢ ECDH ephemeral key forward secrecy and post-compromise
security.

¢ ECDH pre-key post-compromise security as soon as a new
ECDH ephemeral key is generated by a session’s initial recipient.

In practice, PQ3 also provides forward secrecy for ECDH pre-keys
as it requires that participants update their pre-keys registered at the
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All id i s r m ad #t.
Received(id, i, s, r, m, ad) @ #t

; ==> ( (Ex id2 #x. Sent(id2, i, s, r, m, ad) @ #x

& #x < #t)
| (Ex #x. RevealIDKey(s) @ #x & #x < #t))

Figure 7.8: Agreement lemma. For every message-receive event, there must
be a corresponding message-send event for which the participants agree on
the authenticated data, sender, receiver, and message counter, unless the
sender’s long-term identity key was previously compromised.

IDS every 2 weeks. As soon as a client registers a new pre-key, they
establish forward secrecy for all previous session-start messages sent
to them.

Should the adversary at some point break all non-ML-KEM keys
using a quantum computer, PQ3 still provides:

¢ ML-KEM key post-quantum forward secrecy and post-compromise
security.

¢ Chain and message key forward secrecy and post-compromise
security. These properties are established unconditionally except
for chain key post-compromise security, which is established
upon the next public-key ratchet. PQ3 establishes these prop-
erties even when the adversary possesses a quantum-computer
because these keys depend on KEM-encapsulated secrets.

Note that working out and rigorously proving such fine-grained
notions of secrecy is nontrivial and one strongly benefits here from
a proof assistant. Overall, our Tamarin proof of secrecy establishes
that, in the absence of the sender or recipient being compromised, all
keys and messages transmitted are secret. The secrecy property is
fine-grained in that compromises can be tolerated in a well-defined
sense where the effect of the compromise on the secrecy of data is
limited in time and effect as described above. Moreover, we show that
PQ3 combines the security of both classical and post-quantum-secure
cryptographic primitives. Hence, to break PQ3 one must break both.

Agreement

In contrast to secrecy, formalizing agreement is much simpler. This
is because PQ3 relies on the participants’ long-term identity keys’
security to provide agreement. Compromise of a participant’s long-
term identity key is both necessary and sufficient to break agreement.
It is necessary because an attacker must generate a message signature
when trying to spoof a sender, and it is sufficient because a sender need
not compromise the sender’s encryption keys to send an inauthentic
message; they can simply generate their own and send them alongside
the faked message.
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. A1l s1 s2 rl r2 m ad ecdhPkl mkl ecdhPk2 mk2 #t1
. #t2.
( Received(_,_,sl,rl,m,ad) @ #t1
& Keys(ecdhPkl, ,_,_,_,mkl) @ #tl
& Received(_,_,s2,r2,m,ad) @ #t2
& Keys(ecdhPk2,_,_,_,_,mk2) @ #t2)
( (#t1 = #t2)
| ( ecdhPkl = ecdhPk2 & mkl = mk2
9 &sl=s2&rl=r2
10 & Ex #x. ECDHPreKeyGen(rl, ecdhPkl) @ #x)
11 | (Ex #x. RevealIDKey(sl) @ #x & x < #t1 )
12 | (Ex #x. ReveallDKey(s2) @ #x & x < #t2))

7 ==>

Figure 7.9: Injective agreement lemma. It formalizes that for two message-
receive events with the same message m and authenticated data ad, these
events must be the same (line 7), or they were sent using the recipients pre-
key (lines 8f.), or one sender’s identity key was compromised (lines 11ff.).

Our formalization of agreement is split into two Tamarin lemmas
(Figures 7.8 and 7.9). The first lemma formalizes agreement: Whenever
a participant r receives a message m and authenticated data ad, appar-
ently from s and with message counter i, then either s had previously
sent m to r with counter i or that sender’s long-term identity has been
compromised in the past.

The second lemma formalizes that the agreement is injective [107],
meaning that there is a one-to-one mapping from receive-events to
send-events. This lemma states that for every two honest message-
receive events with the same message and authenticated data, these
events must either be identical (#t1 = #t2), or a recipient’'s ECDH pre-
key rather than an ephemeral key was used to derive the message key
(lines 8-10), or either of the senders were compromised. Compromise
of one sender suffices to violate injective agreement because agreement
does not entail secrecy. The adversary could learn a message by
compromising the ECDH and KEM keys of the session. They could
then send the message again, which requires the compromise of a
long-term identity key, however, to produce the necessary signature.

During our proof efforts, we noticed a trivial violation of injec-
tive agreement, which is covered by lines 8-10. PQ3 cannot provide
injective agreement for session-start messages (and messages sent as
part of the symmetric ratchet directly thereafter) as pre-keys can be
reused for session starts. Thus, recipients will accept session-start
messages multiple times. In practice, this case must be addressed by
an application’s session-handling layer, which defines under which
conditions clients will accept session-start messages from devices they
already have an existing session with. We shared this finding with
Apple researchers who confirmed that the iMessage session-handling
layer indeed addresses this case. Put differently, our formal proofs

122



7.4 SECURITY PROOFS

highlight precisely the assumptions on session-handling needed to
securely deploy PQs3.

7.4.3 Proofs

We encountered two challenges when verifying PQ3. First, PQ3 em-
ploys a nested loop. If not carefully handled, loops result in prover
non-termination as they are unrolled infinitely often. Tamarin provides
induction to address this problem, but using induction correctly, espe-
cially when loops are nested, requires postulating nontrivial auxiliary
lemmas. See Section 6.1 for an introduction to Tamarin’s induction
mechanism.

Second, our threat model considers the leakage of “synthetic” key
material, derived using a KDF, and our lemmas naturally must refer to
this key material. When proving secrecy, we repeatedly encountered
cases similar to the following. Tamarin would consider an honest
session sending a message, claiming that the adversary could get the
decryption key for this message (violating secrecy) from a completely
unrelated session. We call such unrelated sessions ghost sessions. In
this case, the non-trivial proof goal was to convince Tamarin that the
ghost session must be the same as the honest or the peer’s session.
Note that other protocol models typically only consider the leakage of
“atomic” key material, i.e., key material modeled as a fresh term.

To address these two challenges, we use three kinds of auxiliary
lemmas.

LooP-JuMP LEMMAS These lemmas allow one to skip unrolling the
steps of a (nested) loop and jump to a “relevant” point in a loop,
for example, its beginning or where a specific term was introduced.

VARIABLE-LINKING LEMMAS These lemmas establish properties of
the following kind. Given a fact tag using variables a and b, if two
instances of that fact tag have the same value for 4, they must have
the same value for b.

ADVERSARY-CONSTRUCTION LEMMAS These lemmas formalize how
an adversary could learn a term. Typically, the adversary can either
construct it or access it using a dedicated reveal rule (which in turn
typically implies a contradiction to the threat model). Figure 7.10
depicts our model’s adversary-construction lemmas. For example,
CkCompromise states that the adversary can only know a chain key
if they know the value that gets split into the root and chain key
(rkCK), or they compromised this or a previous chain key.

Loop-jump lemmas are the foundation for proving properties of
models including nested loops. Without such lemmas, Tamarin’s in-
duction fails to prove even the simplest properties of an outer loop.
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Similarly to Example 5 introduced in Section 6.1, the induction hypoth-
esis will not apply in cases where a step in the outer loop is directly
preceded by a step in an inner loop. Moreover, adversary-construction
lemmas are required to deal with the complicated terms that are com-
puted in nested loops, and variable-linking lemmas are required to
address ghost sessions.

We proved secrecy for PQ3 using a series of adversary-construction
lemmas, depicted in Figure 7.10, which in turn were proven using
the loop-jump and variable-linking lemmas in Figures 7.11 and 7.12.
Concretely, when proving secrecy, Tamarin first negates the original
lemma and tries to construct a trace satisfying the negated lemma,
i.e., Tamarin tries to construct a trace where a message has been sent
and the adversary knows it. By solving for how the adversary could
learn the message, Tamarin deduces that the adversary must know
the message key used for encryption. This allows us to apply the first
adversary-construction lemma MkCompromise. This lemma expresses
that the adversary can only know the message key if they either know
the respective chain key (allowing us to apply the next adversary-
construction lemma) or if they access a reveal rule (contradicting our
threat model assumptions directly). In the case where the adversary
knows a respective smaller term, we can apply the next adversary-
construction lemma, etc. Finally, the lemmas ECDHSSCompromise and
KemSSCompromise directly contradict the threat model.

We proved these adversary-construction lemma using the loop-
jump and variable-linking lemmas depicted in Figures 7.11 and 7.12.
A sequence of variable-linking lemmas (depicted in blue) connect mes-
sage to chain to root keys and to the respective KEM shared secret and
ECDH shared secret (Figure 7.11). Loop-jump lemmas (depicted in
orange) then connect the shared secrets to the asymmetric key material
used to establish them (Figure 7.12). This allows Tamarin to deduce
that access to the shared secret requires access to the respective private
key material. Beyond the lemmas depicted in Figures 7.11 and 7.12,
we only use the three loop-jump lemmas RootKeyConnectionReceive,
RootKeyConnectionSend, and SessionStart, which jump from an in-
stance of the symmetric ratchet to the most recent public key ratchet
(switching from sender to receiver or receiver to sender respectively)
and the session start.

We proved both agreement lemmas much like we proved secrecy,
but proving agreement was much simpler. PQ3 provides agreement by
signing every message. When trying to prove non-injective agreement,
Tamarin immediately finds that to violate agreement, the adversary
must generate this signature themself, which in turn requires access
to the signing key. The rule that introduces the signing key, however,
can directly be established using the SessionStart lemma as signing
keys are queried only upon session start.
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Lemma Term Key Reveal Implications

msg

(Ex #x. RevealMessageKey(me, msgKey) @ #x)
MkCompromise msgKey
| (Ex #x. RevealMessageKey(them, msgKey) @ #x)

(Ex ckC #x. RevealChainKey(me, ckC) @ #x

.

(ckC << chainKey | ckC = chainKey))
CkCompromise chainKey
ckC #x. RevealChainKey(them, ckC) @ #x

v ‘
~
fu
x o

& (ckC << chainKey | ckC = chainKey))

(Ex #x. RevealChainKey(me, suffix(rkCK)) @ #x)

r“ll“ﬂ | (Ex #x. RevealChainKey(them, suffix(rkCK)) @ #x)

RkSecretCompromise
ECDHSS + KEMSS rkCK

(Ex rk #x. RevealRootKey(me, kemSS, rk) @ #x
& rk << prefix(rkCK))
| (Ex rk #x. RevealRootKey(them, kemSS, rk) @ #x
& rk << prefix(rkCK))
| ( (Ex ckC #x. RevealChainKey(me, ckC) @ #x
& ckC = suffix(rkCK))
& (...)) // required for lemma to be inductive
| ( (Ex ckC #x. RevealChainKey(them, ckC) @ #x
& ckC = suffix(rkCK))

& (...)) // required for lemma to be inductive

(Ex #x. RevealECDHPreKey(them, theirPk) @ #x)
v | (Ex #x. RevealECDHKey(id, me, myPk) @ #x)
ECDHSSCompromise ecdhsSS | (Ex id2 #x. RevealECDHKey(id2, them, theirPk) @ #x)

| (Ex #x. RevealIdentityKey(them) @ #x & #x < #tl)

| (Ex #x. PQAttack() @ #x)

(Ex #x. RevealKemKey(me, encapPk) @ #x)
| (Ex #x. RevealKemKey(them, encapPk) @ #x)

A 4
KemSSCompromise [EEEEE:}AAP | (Ex #x. RevealKemPreKey(me, encapPk) @ #Xx)
| (Ex #x. RevealKemPreKey(them, encapPk) @ #x)

| (Ex #x. RevealIdentityKey(them) @ #x & #x < #tl)

Figure 7.10: Connection between Adversary-Construction Lemmas for Mes-
sage Secrecy. Arrows denote logical implication. We omit two conjuncts
in RkSecretCompromiseKEMSS that are only required to prove the lemma by
induction. We provide more details on these conjuncts in our formal model
(see Section 1.6).

RkFixesKemSS

MkCkRel. CkRkRel.
m/\ke?nss

msgKey <— chainKey +<— rootKey

ecdhSS

RkFixesEcdhSS

Figure 7.11: Loop-Jump (orange) and Variable-Linking Lemmas (blue) Re-
lated to Key Derivation. Black arrows indicate which variables are used to
construct other variables, e.g., a message key is derived from a chain key.
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s encapPk
theirNewKemPk myEcdhpk
kemss ecdhss < )
theirkemPk theirEcdhPk
N myKemPk

Figure 7.12: Loop-Jump Lemmas (orange) Related to Establishing Shared
Secrets. Black arrows indicate which key material can be used to establish
which shared secret.

When attempting to prove injective agreement, Tamarin will start
by constructing a trace with two honest receive events for the same
message. Using variable-linking lemmas, we can establish that these
two sessions must use the same ECDH shared secret, and using the
respective loop-jump lemmas, we can jump to the rule instantiation
where the receiver generated their latest ECDH ephemeral key. This
allows Tamarin to derive that the two receive events must have hap-
pened in the same session (unless a pre-key was used; but this case is
addressed in the lemma directly).

Finally, we only use six auxiliary lemmas not fitting the categories
defined above. These lemmas simply limit Tamarin’s search space to
reduce proof construction time. For example, they show that certain
events (like session start) can only occur once per session, or establish
well-formedness conditions (for example, that the root key is a subterm
of the chain key).

7.4.4 Discussion

Scope of Analysis

We do not consider session handling, long-term identity or pre-key
rollover, and only consider group messaging implicitly. Our anal-
ysis covers the protocol design as described in the documentations
we received from Apple. PQ3’s implementation is not part of our
analysis. Furthermore, as our analysis is based on symbolic models,
it abstracts away some details of the concrete implementation, like
message lengths and some algorithmic details of the ciphers used.

We did not model session handling as a specification of iMessage’s
session handling was not available to us. Moreover, PQ3 is not limited
in its use to iMessage. Different applications may have different
requirements on their session handling. Studying PQ3 in isolation is
therefore desirable in its own right.
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A security analysis of group aspects, such as members joining or
leaving groups, is not part of PQ3 as it is a device-to-device messaging
protocol. In practice, group messaging can be implemented using PQ3
by sending messages via pairwise runs of PQ3 to all group members.
Such functionality is provided by an application’s session-handling
layer and is thus outside of our analysis. iMessage implements group
messaging using multiple, individual device-to-device sessions, and
our analysis establishes the security of each such session.

Beyond the limitations just mentioned, our formal model incorpo-
rates all details that were part of the documentation provided to us by
Apple. In particular, we did not abstract away any protocol steps that
participants may take.

Proof Effort

Our Tamarin model comprises 32 lemmas in total. Next to the auxiliary
lemmas used to prove secrecy and agreement (Section 77.4.3), our model
includes a sources lemma, which aids Tamarin in precomputation steps,
and two executability lemmas. Executability lemmas effectively “sanity
check” a protocol specification by establishing that the participants can
run the protocol without adversary involvement. This enhances our
confidence that the protocol model faithfully represents the protocol
and that its properties do not hold trivially.

All proofs are guided by custom proof heuristics, implemented
in Python, and finding the right heuristics to successfully construct
proofs required substantial efforts. Checking the proof for the lemma
formalizing injective agreement (Section 7.4.2) takes around 77 hours
and requires 20 GB of RAM on a server using two Intel Xeon CPU
E5-2650 v4 @ 2.20GHz. The proofs of other lemmas require up to 100
GB of RAM to be checked. Overall, we estimate that proving PQ3 took
around 2.5 person-months of work, but we also estimate that proving
protocols exhibiting challenges similar to iMessage PQ3 would take
much less time when following our proof strategy introduced above.

7.5 RELATED WORK
7.5.1 Formal Analysis of Double Ratchet Protocols in the Symbolic Model

ProVerif was used to analyze Signal [88] and its post-quantum secure
key agreement protocol PQXDH [22], but both analyses are quite lim-
ited in scope. The former does not consider Signal’s symmetric ratchet
and only considers a fixed, finite number of protocol sessions without
loops. It was conducted before ProVerif was extended to support a
trace induction mechanism [26], which is comparable to Tamarin’s
trace induction. The latter work analyzes POXDH in isolation and
thus does not consider any of Signal’s looping behavior.
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[54] analyzes Signal together with its session-handling layer Sesame
[109] using Tamarin. The authors show that, when sessions are ac-
counted for, Signal does not achieve post-compromise security despite
the double ratchet having this property. To show this, however, they
abstract the Signal protocol, over-approximating its security and sim-
plifying its looping structure drastically.

The first work in the symbolic model to consider Signal’s looping
behavior was conducted in DY* [19]. In the original DY* paper [19],
the authors present an analysis of Signal as a case study. They observe:
“Notably, Signal has not been mechanically analyzed for an arbitrary
number of rounds before. The ProVerif analysis of the Signal protocol
in [88] was limited to two messages (three ratcheting rounds), at
which point the analysis already took 29 hours. (With CryptoVerif,
the analysis of Signal has to be limited to just one ratcheting round).”
Their own proof is, however, also limited and only verifies properties
for the outermost ratchet.

7.5.2  Computational Analysis of Double Ratchet Protocols

In [23], the authors analyze variants of the double ratchet protocol in
the Universal Composability (UC) framework. They provide detailed
security definitions and consider when keys must be deleted for
different properties to hold. An analysis in the UC framework is also
given by [39]. In [8, 48], the authors present game-based proofs of
security. In particular, [48] presents a formal analysis of Signal in the
random oracle model. Their focus is on Signal’s key agreement and
they reason about loops using induction. [8] carries out game-based
proofs for a Signal-like protocol; they provide a rational reconstruction
of a generalized protocol that modularly achieves the different kinds
of properties one wants from Signal and the use of double ratchets.
In all these works, security is shown using pen-and-paper proofs,
which are not machine checked, and post-quantum security is not
considered.

Concomitantly to our work, Stebila carried out a computational
analysis of PQ3 [151], providing a reduction argument for its security.
He also formalizes the hybrid cryptography integrated into both PQ3’s
initialization and double ratchet, and establishes that this provides
both forward secrecy and post-compromise security against both clas-
sical and “harvest now, decrypt later” adversaries. The modeling of
cryptography is, as is standard for computational formalizations, more
detailed than in our approach. In contrast, the security model, and the
proofs (which are game-based, focused on deriving a bound on the ad-
versary’s advantages) are considerably more complex, and proofs are
pen-and-paper based, rather than machine checked. Moreover, [151]
did not consider replay in its analysis, and during our Tamarin proofs,
we uncovered that injective agreement can only be provided under
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additional assumptions (not present in [151]) on the session-handling
layer.

7.6 CONCLUSION

We have used Tamarin to formally verify the device-to-device messag-
ing protocol PQ3. Our analysis is based on machine-checked proofs
of fine-grained secrecy and authentication properties. This provides
a high degree of assurance that PQ3 functions securely against an
active network adversary who can selectively compromise parties,
even when sufficiently powerful quantum computers become avail-
able. Additionally, the proven properties give a detailed account of
the impact that the compromise of every individual key has. Lastly,
we show that Tamarin is up to the task of reasoning about complex
protocols with nested loops.

FUTURE WORK  Of particular interest would be the formal analysis
of PQ3 in conjunction with session handling, as implemented for
iMessage. Whether PQ3’s security guarantees as established here fully
transfer to iMessage remains an open question. For example, [54] es-
tablished that the Signal application may not provide post-compromise
security, although the protocol does due to the implementation of ses-
sion handling. Furthermore, our formal model could be extended to
account for IDS key roll-over, i.e., of long-term identity and pre-keys.
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CYCLIC INDUCTION FOR SECURITY PROTOCOL
VERIFICATION

8.1 INTRODUCTION

In the previous chapter, we used trace induction to prove properties
of protocols with nested loops. We presented a security proof for
iMessage PQ3, which extends the classic double ratchet algorithm
with KEMs to provide post-quantum security. Proving iMessage PQ3
secure using trace induction required substantial efforts and took
many person-months (see Sections 7.4.3, 7.4.4). In this chapter, we
present a novel, cyclic induction mechanism for the Tamarin prover
that drastically simplifies the analysis of protocols using nested loops.

Our cyclic induction mechanism improves upon the state-of-the-
art proof automation for modern protocol designs by tackling the
non-termination issues of protocol models that use (nested) loops. In
contrast to the proof techniques of trace induction (see Section 6.1) and
the use of auxiliary lemmas, which require manually stating inductive
conjectures and useful auxiliary lemmas, cyclic induction provides
more proof automation with fewer auxiliary lemmas.

Recall that Tamarin uses constraint systems to represent the set
of executions violating a given property (see Chapter 2). Constraint
reduction essentially corresponds to a backwards search from an
attack state to an initial state. By the reduction rules” soundness and
completeness, reaching an initial state corresponds to an attack, while
reducing all constraint systems to contradictions corresponds to a
proof. Non-termination manifests itself as a never-ending backwards
attack construction.

When explored in Tamarin’s interactive mode, these constructions
usually exhibit an indefinitely repeating behavioral pattern, such as
the one shown on the right-hand branch of Figure 8.1. In this chapter,
we formalize when such infinitely repeating patterns contradict the
executions’” well-foundedness. For that, we use the proof method
infinite descent that was already used by Euclid, but first formalized by
Fermat [124]. They applied it, for instance, to prove the non-existence
of solutions to number-theoretic problems.

Modern accounts of deductive reasoning formalize such arguments
using cyclic proofs (e.g., [32, 36]). Deductive reasoning rules decompose
a proof goal into sub-goals, for example, proving P A Q can be reduced
to proving P and proving Q. Applying these rules induces a proof tree,
whose leaves are given by axioms, e.g., AV —~A. Cyclic proofs allow
one to prove a statement P(c(x)) that instantiates a more general
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Case 1

Case 2.1

’

Figure 8.1: Example of non-termination in Tamarin. Without using trace
induction, Tamarin can only apply one proof method, which results in a
case split. Left-side case leads to a contradiction (4) whereas right-side case
recurses infinitely.

statement P(x) encountered earlier in the proof by introducing a
backlink from P(c(x)) to P(x). In this way, cyclic proofs generalize
proof trees to proof graphs. Moreover, an additional global soundness
condition ensures that all cycles correspond to well-founded inductive
arguments. This form of inductive reasoning does not use any explicit
induction rules.

Cyclic proofs” advantage over traditional inductive proofs is that
inductive reasoning in general requires a priori ingenuity to choose an
inductive conjecture, induction variables, and the position in a proof to
apply induction. These choices, sometimes even called “eureka steps”
to underscore their difficulty, make the automation of inductive proofs
notoriously hard [37, 38]. In contrast, in cyclic proofs, these choices
are made implicitly and a posteriori: The inductive statement and the
position where to apply induction arise by the formation of back-
links, whereas the induction variables are determined by the global
soundness condition. These properties of cyclic induction can both
simplify proofs and offer promising potential for proof automation,
even though, in general, undecidability still calls for user-provided
inductive statements [37, 38]. Given its advantages over traditional
induction, cyclic induction has been applied in many areas of logic
and computer science, including first-order logic with inductive predi-
cates [32], equational reasoning about functional programs [82], pro-
gram logics [134, 156], program synthesis [79], and the p-calculi [141,
147].
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In this chapter, we formalize and implement cyclic proofs for
security protocol verification in Tamarin, we prove its soundness, and
we show that it substantially improves proof automation. Doing this
required overcoming several challenges, both in terms of the logical
formalism and proof search.

First, Tamarin uses constraint solving rather than a form of sequent
calculus, commonly used for cyclic proofs. It was initially unclear
whether cyclic proofs could be adapted to this setting. Besides formu-
las describing protocol properties, its constraint systems also include
complex graph constraints, which describe execution steps and their
dependencies. The interpretation of constraint systems as sequents
that derive contradictions from the given constraints clarified the con-
nection to existing cyclic proof systems and facilitated their adaption
to our setting. Moreover, Tamarin’s backward search for an initial
state suggested the set of timepoints labeling execution steps as the
natural well-founded domain for cyclic induction.

Second, we find that backlink formation in cyclic proofs requires
two structural rules from sequent calculi, namely, weakening and
cut, which we add to Tamarin’s constraint reduction rules. Weakening
generalizes a constraint system by discarding some constraints and
cut introduces a new constraint and its negation in separate cases.
To restrict the search space and achieve a high degree of automation,
we use the structural rules in a strictly controlled way: our use of
weakening is based on the protocol’s looping structure and we use
cut only with formulas that are either (i) instances of formulas that
already exist in the constraint system or (ii) ordering constraints that
preserve some of the weakened information.

Finally, as the backlink search is NP-complete, we devise an effec-
tive heuristic to perform backlink checks incrementally and discard
impossible cases early.

We evaluate cyclic proofs and compare them with proofs by explicit
trace induction. Our results show that our controlled use of the
structural rules together with only minimal and generic changes to
Tamarin’s existing proof search strategies are sufficient to prove many
lemmas with no or substantially fewer auxiliary lemmas than needed
with trace induction.

CONTRIBUTIONS Our contributions are three-fold. First, we intro-
duce cyclic proofs for protocol verification. In particular, we extend
Tamarin’s constraint reduction rules with structural rules (weakening
and cut), define cyclic proofs for Tamarin, and prove their soundness.
Second, we implement this proof system in Tamarin, which requires a
major overhaul of Tamarin’s internal structure. We also provide a set
of heuristics to guide effective proof search in the cyclic proof system,
including the controlled application of the structural rules. Third, we
evaluate our approach on fourteen case studies ranging from simple
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Figure 8.2: Proof of ¢ using cyclic induction

protocols to a detailed model of the Signal protocol. We show that
our implementation effectively reduces the number of auxiliary lem-
mas required. In particular, we require no auxiliary lemmas to prove
message secrecy for Signal.

Our work opens an exciting new area in which automatic induc-
tion helps scale protocol verification. Whereas current automatic
tools only provide rudimentary support for induction, we provide
a fundamentally new and general induction mechanism. A wide
variety of protocols will benefit from this. For example, protocols
with nested loops, such as those using double ratchets, protocols with
arbitrarily many participants, such as consensus protocols, and proto-
cols involving participant groups, such as those employing threshold

cryptography.

OUTLINE We proceed as follows. We start by introducing cyclic
induction for Tamarin at a high-level in Section 8.2 and then proceed
to formally develop it in Section 8.3. We describe our implementation
of cyclic induction in Section 8.4 and evaluate it in Section 8.5. Finally,
we review related work and draw conclusions in Sections 8.6 and 8.7.

8.2 OVERVIEW OF CYCLIC INDUCTION FOR TAMARIN

Recall the Loop model from Example 5, Section 6.1. The Loop theory
models a loop that takes non-deterministically many steps and even-
tually terminates. We now show how to construct a cyclic proof for
the property formalizing that any Loop fact is preceded by a Start fact:

¢1 = Vj,x. Loop(x)@j = Ji. Start(x)@i N i < j.

In a proof based on cyclic induction, there is no explicit induction
rule or induction hypothesis. Instead, one uses the ordinary con-
straint reduction rules and tries to detect loops such as the one in
Figure 8.1. One folds the associated infinite proof tree into a finite
tree with backlinks and then tries to prove that the resulting cyclic
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structure represents well-founded (non-circular!) reasoning. In this
section, we provide some intuition for our cyclic proof system, which
we subsequently formalize in Section 8.3.

8.2.1 Backlink Formation

We can detect loops by discovering constraint systems that are sub-
sumed by more general ones appearing earlier in the proof. A con-
straint system I' subsumes a leaf constraint system I'" when I'c C I” for
some substitution ¢. In this case, we can introduce a backlink from I”
to I, thereby creating a pre-proof graph instead of a tree.

We now construct a cyclic proof of ¢; for the Loop example. Look-
ing at the system I'y; in Figure 8.2, we see that the Loop node at vr
repeats the initial Loop node at j in I';. More precisely, the substitution
o = [j — vr] maps the former node to the latter one. This does not,
however, mean that I''o C Ty as o(¢(j)) = (vr) is missing from
I'2;. However, we can derive o(¢(j)) if we add a cut constraint reduc-
tion rule. Using this rule, we add Y(vr) to the constraint system I'p,
resulting in the constraint system I'»p;, and we show in a separate
case that adding its negation leads to a contradiction. Indeed, -y (vr)
contradicts ¢(j) because vr <r,, j. After cutting in ¢(vr), we have
I'io C I'y and can thus add a backlink from I';»; to I'; (dashed arrow
in Figure 8.2). This results in a cyclic pre-proof of the property ¢;.

8.2.2  Well-Founded Reasoning

To avoid unsound circular reasoning, we must ensure that all cycles
in a pre-proof correspond to well-founded inductive arguments. Sup-
pose we have constructed a pre-proof for ¢, but ¢ is satisfiable, i.e.,
(dg,0) |=f @ for some dg and 6. Since Tamarin’s constraint reduction
rules are sound, every satisfiable constraint system in the pre-proof is
either solved or has a satisfiable child constraint system.

We build a path 7 = ngn; - - - as follows. Let ng be ¢ (satisfiable)
and 7,41 be one of the satisfiable children of n;, as long as n; has
children in the pre-proof. Suppose 7 were finite. Then, its last
constraint system must be a leaf in the pre-proof and thus cannot
be satisfiable because all leafs in the pre-proof must be contradictory
axiom constraint systems. Thus 7t must be infinite.

To establish that an infinite path 7t corresponds to well-founded
reasoning, we require that every cycle in a pre-proof “progresses.”
Progress ensures that repeating patterns captured by backlinks occur
at smaller and smaller timepoints along an infinite path, which contra-
dicts the well-foundedness of timepoints. This follows the intuition
that repeatedly solving the same premises, creating increasingly larger
constraint systems, does not lead to a finite attack.
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Figure 8.3: Weakening in cyclic induction proof of ¢g

More precisely, we say that a backlink from I to T where I'c C T”
progresses on j when there is a temporal variable j such that o(j) < j
(as is the case in our example above). We ensure progress by requiring
that every backlink progresses on at least one temporal variable j. If
we were to traverse a backlink infinitely often, then j would decrease
infinitely often. However, as temporal variables are interpreted in IN,
this is impossible.*

Additionally, we must ensure that backlinks are mutually compat-
ible if they are part of the same strongly connected subgraph (SCS).
It could happen that two backlinks ¢; and ¢, “destroy” each other’s
progress, for example, if each of them increases the variable on which
the other progresses. To prevent this, we will define a notion of preser-
vation, which we use to define a discharge condition for pre-proofs and
an algorithm to check it.

8.2.3 Explicit Weakening

We now turn to the property that we wanted to prove initially when
introducing Example 5, namely that every Stop fact is preceded by a
Start fact:

@0 = Vj, x. Stop(x)@j = Ji. Start(x)@i N i < j.

As we showed in Section 6.1, trying to prove this property using trace
induction does not lead to a successful proof. One can find a proof,
however, when using ¢ as an auxiliary lemma.

We next show how to prove this property with cyclic induction
but without any auxiliary lemmas. The initial node constraint is a
Stop node at j and subsequently solving that node’s premise A(x)

In Section 2.4, we introduce temporal variables as being interpreted in Q. We will later
show that the temporal variables that we consider for progress must be interpreted
in IN.
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produces two constraint systems, one for Start and one for Loop. The
former leads to an immediate contradiction as before. The latter is
depicted as I'}, in Figure 8.3. This figure only shows the backlink in
the cyclic proof of ¢y and omits all non-looping branches. Without any
other steps, solving the premise A(x) again would lead to a constraint
system similar to I'},,;, including the faded-out node. There is no
backlink from this constraint system to I',, because, to ensure progress,
we must map vr to vr.1. However, if we do that, we require an edge
from vr.1 to j in T'},,;, which is missing.

We solve this problem by simply “deleting” the Stop node at j.
This is called weakening and is a well-established and sound proof rule
for generalization; we define a weakening rule in Section 8.3. Without
the Stop node, there is a backlink from I%,,; to I'},,, as illustrated in
Figure 8.3. Note that, in contrast to the previous example, there is no
need to use the cut rule here because the timepoint j in the formula
P(j) is not substituted by o.

83 CYCLIC INDUCTION FOR TAMARIN

In this section, we introduce cyclic induction for Tamarin formally,
following the intuition presented in the previous section. We begin by
introducing two new constraint solving rules, cut and weakening, in
Section 8.3.1. We then introduce cyclic pre-proofs in Section 8.3.2 and
in Section 8.3.3 show when pre-proofs correspond to sound proofs,
using temporal variables to establish progress. Finally, we present an
algorithm to check when pre-proofs are proofs in Section 8.3.4.

8.3.1  Structural Constraint Reduction Rules

We extend Tamarin’s constraint reduction rules with two additional
rules: weakening and cut, which are well-known structural rules in
logic. To maintain important invariants of Tamarin’s constraint solving
algorithm, we use restricted versions of these rules, but omit these
rather technical restrictions for clarity (see Appendix A).

The cut rule S) introduces a new set of formulas A and proves
each formula’s validity in separate cases. The weakening rule Sy
simply removes some constraints.

Sn:T o (T,8) | [|,ea (T ) Sy :T,A~T

Clearly, S, is sound and complete and Syy is sound. However, Sy
is incomplete, since sols(I' U A) C sols(T'). Hence, the models found
after applying weakening may not constitute attacks.
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I'so9, Ay 303, A3

Figure 8.4: A pre-proof (D, L,%). Solid arrows are edges in £ and dashed
arrows are backlinks in L.

8.3.2  Pre-Proofs

To introduce cyclic reasoning in Tamarin, we augment derivation trees,
as defined in Section 2.6, with backlinks that introduce cycles. We add
a backlink from a leaf I’ to an inner node I on the path from the
root to I” whenever T is a more general constraint system than T/, ie.,
I'c C I" for some substitution ¢.

Definition 4 (Pre-Proof). A pre-proof P = (D, L,%) of a property ¢
consists of a derivation tree D = (N, €&, ) for ¢, a partial backlink
function £ : N — N, and a partial substitution function £ : N’ — S,
such that the domain of £ and X is the set of open leaves of D and,
for each open leaf v with 0, = X(v), the node w = L(v) lies on the
path from D’s root node vy to v and oy (y(w)) C v(v).

We will often write ¢, for £(v) and we also use £ to denote the
function’s graph, which consists of backlinks.

Definition 5 (Pre-proof graph). The pre-proof graph of P = (D, L, %) is
G(P) = (N,EUL,). For a backlink ¢ = (v,w) € L, we denote the
path from w to v in D by ().

Figure 8.4 gives an example of a pre-proof. Every leaf of the deriva-
tion tree either has an associated backlink or yields a contradiction.

A strongly connected subgraph (SCS) of G(P) is a subgraph of
G(P) that contains at least one edge and where there is a path from
every node to every other node. A strongly connected component
(SCC) is a maximal strongly connected subgraph. We henceforth
only consider SCSes and SCCs that contain at least one edge without
explicitly mentioning it.

Note that any SCS S in G(P) is characterized by the set Lg of
backlinks it contains: S contains the nodes and edges of the paths 77(¢)
for some ¢/ € Lg and the backlinks in £s. We say thata set L C £
induces an an SCS S if L = Ls.
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8.3.3 Cyclic Proofs and their Soundness

We next show when pre-proofs are sound, i.e., when a cyclic pre-proof
for a property ¢ is a cyclic proof that indeed implies that ¢ holds.
Following the intuition presented in Section 8.2.2, the critical part of
a sound definition of (cyclic) proofs is defining suitable notions of
progress and preservation that ensure that the inductive reasoning
embodied in the pre-proof is well-founded.

Definition 6 (Progress and preservation). Given a pre-proof P =
(D, L,%) and a temporal variable i € Vi, a backlink ¢ = (v, w) € L:

e preserves i if i occurs free in all constraint systems labeling the

nodes on 7t(£) and 0 (i) <, () i, and

* progresses on i, if £ preserves i and oy(i) <. (y) i-

Definition 7 (Proof). A pre-proof P = (D, L,X) of a property ¢ is
a proof of ¢ if it satisfies the following discharge condition: for each
strongly connected subgraph S of G(P), there is a temporal variable
i € Vimp such that some backlink ¢ € Ls progresses on i, and all
backlinks ¢’ € Lg preserve i.

We next state auxiliary lemmas for our soundness theorem. Point
(iii) of 2 is needed, since timepoints are in general interpreted in Q,
which is not well-founded. However, timepoints related to action and
node constraints are always interpreted in IN.

Lemma 2 (Local soundness). Tamarin’s constraint reduction rules are
sound. In particular, given arule I ~» {I'y,...,I',} and a model (dg, 0)
satisfying T, there is valuation 6’ such that

(i) (dg, @) satisfies some T,
(ii) 6 agrees with 6’ on all free variables common to I and Iy, and

(iii) the property that all free temporal variables are valuated in IN is
preserved, i.e., if 6(fv,,,(I')) € N then o0 (formy(T)) € N.

Proof. Points (i) and (ii) can be seen by inspection of the rules” sound-
ness proofs in [111, Theorems 4 and 11] and [53, Lemmas 4, 6, and 8].*
It is easy to see that this part also holds for the cut and weakening
rules, Sp and Sy, introduced in Section 8.3.1. In particular, for all
rules we have that either 8’ = 6 or 6 extends 6 with mappings for the
fresh free variables of T. The latter is the case for the rules Sa, S1q,
Sx~, 83, Sy Sikipr Sikbpr S--», and 8- jast, which all introduce fresh
variables (see Appendix A). The former is the case for all other rules,
except Sp. For Sp, either case may apply, depending on whether the
cut introduces fresh (term) variables.

Recall that what we call soundness here is called completeness from the constraint
solving perspective of [53, 111].
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Regarding point (iii), the preservation of temporal variable valua-
tion in IN, the only interesting rules here are those introducing fresh
temporal variables, which we cover below. The cases for the other
rules follow from the first part of the lemma. Note, in particular, that
the cut rule Sy does not introduce any fresh temporal variables.

S3: We focus on the interesting case of temporal variables here. Con-
sider ¢ = Ji. f@i N €T for i € Vyyp. We know that ¢ must be
of this form since all formulas in I" are guarded by WF4’. We
can assume without loss of generality that i ¢ fo(I'). Hence,
we have I'1 = T U {f@i A ¢}. Since (dg,0’) |=f T'1 for some ¢’
extending 0’s domain with i, we have (dg,0’) | f@i, which
implies i € idx(I) and hence 6'(i) € IN.

Note that guardedness is defined on vectors of quantified vari-
ables, but S5 on a single variable. Naturally, 3¥.¢ is equal to
dxp. ... 3x,. ¢ so we can assume without loss of generality that
the timepoint quantified within ¥ is solved last (as done above).

Sy: Inthiscase, (f>yj) €Tand Ty =TU{i:ri, (i,u) — (j,v)} fora
fresh i € Viyp. Since (dg,0') |~ Tk and hence (dg,0') =g i:ri
for some 6’ extending 6’s domain with i, we have 6’ (i) € idx(I)
and hence 6/ (i) € IN.

S,k1,: For this rule, we have (IKYt) >p j) € Tand Ty = T U
{!KT(H)@j,j < i} for a fresh j € Vimp. Since (dg,0') |5 I and
hence (dg,0') | 'K'(t)@j for some 0’ extending §’s domain

with j, we have 6'(j) € idx(I) and hence 6'(j) € IN.

S kips S--»: These cases are similar to S;.

This concludes the proof of the lemma. ]

Lemma 3. Let (v,w) € £ be a backlink and (dg, 0) a model satisfying
v(v). Then (dg, 6 o o) satisfies y(w).

Proof. By the definition of pre-proofs. O

Theorem 1 (Soundness). Let P be a proof for a given protocol model
(R,E) and a guarded trace property ¢. Then R |=f ¢.

Proof (sketch). Suppose for a contradiction that ¢ is (R, E)-satisfiable.
Then there is a model (dg,6y) | ¢. Using Lemmas 2 and 3, we
“track” the model dg in the pre-proof graph G(P) by constructing an
infinite sequence { (v, 6x) }xew of pairs of nodes and valuations such
that:

1. Forall k € N, (dg,0k) |=¢ 7 (v).

2. For all temporal variables i € fo(y(vg)), 6(i) € N.
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Observe that the path 7 = {vy }ren Will eventually stay in one of
the pre-proof’s SCSes, and we can choose this SCS minimally. Then,
we choose i to be the variable that is progressed by one backlink ¢ in
that SCS according to the definition of proofs (Definition 7). Note that
7t must traverse / infinitely often. If this were not the case, the SCS
was not chosen minimally. Thus, the sequence {6 (i) }xen decreases
infinitely often, which contradicts the well-foundedness of the natural
numbers. O

The above proof sketch misses what happens to i when travers-
ing backlinks other than ¢ and when traversing edges that are not
backlinks. For example, the sequence 0,1,0,1,0,1,... also decreases
infinitely often, but this does not contradict the natural numbers” well-
foundedness as it also increases infinitely often. In the full proof
below, we account for such cases by explicitly constructing an infinite
sequence of nodes and valuations p such that the valuations preserve
i when traversing pre-proof edges other than /.

Proof. Let P = (D, L,Z) be a proof of the guarded trace property ¢
with D = (N, &, 7). Assume for a contradiction that ¢ is not (R, E)-
valid, i.e., there is a trace tr of (R, E) and a valuation 0 such that
(tr,0) K=t ¢. Then there is a dependency graph dg and valuation 6y
such that (dg,6y) |=¢ {¢}-

Observe that given the soundness of Tamarin’s constraint solving
rules, we can “track” the solution dg in the proof graph G(P) using
Lemmas 2 and 3. We use these two lemmas to construct an infinite
sequence p = { (vn,é)n)}n < ©f nodes and valuations such that 77 =
{vn}nen is an infinite path in G(P) and, for all k € IN, we have
(48, 6% |=¢ (0x) and 6 (foy, (1(06))) € N.

We set g to be G(P)’s root node. Thus, the sequence p starts with
po = (vo,00). Note that (dg,60y) |Fr v(vo) by assumption, and, as ¢
is closed, we have 6y(fv,,,(7(v0))) = @ € N. Let py = (v,6) be the
last element of the sequence p constructed so far. By construction
(dg,0) |Ff v(v) and G(fvtmp('y(v))) C N hold. There are two cases:

1. v is an inner node of D. Since (dg,0) | v(v), we use Lemma 2
to obtain a successor node v’ of v in D and a valuation ¢’
such that (dg,0') |= v(v'), 6 and €' agree on all free vari-
ables common to y(v) and y(v'), and fv,,,,,(7(v)) € IN. We set

Pri1 = (v, 6).

2. v is a leaf node of D. For axiom leaves v, we have y(v) = L,
which contradicts (dg,0) |=g ¥(v). Therefore, there must be
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a backlink (v,v') € L for some node v'. Using Lemma 3, we
derive (dg,000y) |=g v(v') from (dg,0) |=f v(v). We also have

(6 0 0) (fo,, (7(0)))
= 0oy, (00 (7(v))))
€ 0(foy,(1(0))) by Definition 4
CN. by construction of pi

We set g1 := (¢/,000y).

We can continue this construction indefinitely to obtain an infinite
sequence p, as we can never reach an axiom leaf.

Observe that after a certain point 1, every node v (k > n) must
appear infinitely often on 7r. Therefore, the set {v,, V41, V2, ... }
induces an SCS S of G(P). By Definition 7, there exists a temporal
variable i € Vi such that

(i) there exists a backlink ¢ € Lg that progresses on i, and
(ii) all backlinks ¢’ € Lg preserve i.

Let ¢ be the backlink that progresses on i in Ls. Then, for k > n
and every two successive pairs (v, 0¢) and (v;1,04+1), one of two
cases applies:

1. vy is an inner node of D. Then, there must be a backlink ¢/ =
(v,w) € Lg such that vy lies on the path 77(¢') from w (inner
node) to v (leaf). Since ¢’ preserves i, we know that i occurs free
in both y(v;) and 7y (vk,1) and therefore 6, 1(i) = 0 (i).

2. There exists a backlink ¢ = (vy, v441) € Ls and 01 = 6 0 0,
Since ¢’ preserves i (all backlinks in L£g do), we have oy, (i) <
i and therefore 6.1 (i) < 6;(i) by Lemma 1, point (ii).

¥(vx)

For ¢/ = ¢ we have progress on i, i.e., 0y, (i) (o) T and
hence 60y (0v, (1)) = 0k11(i) < 6k(i), by the construction of p
and Lemma 1, point (i).

This shows that the sequence {6y (i) } x>, monotonically decreases.
Since every node of S occurs on the path 7(¢') of some backlink ¢’
and all backlinks in Lg preserve i, we derive that i occurs free in
(v) for all v € S and therefore 60(i) € IN for all k > n. Since the
progressing backlink ¢ is traversed infinitely often on the infinite path
7 in G(P), the sequence {6y (i) }s>, strictly decreases infinitely often,
which contradicts the well-foundedness of (IN, <). O

8.3.4 Alternative Discharge Condition

We give an alternative condition for pre-proofs that can be easily
implemented as an algorithm to check whether a pre-proof is a proof.
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Progress Orders

This condition is based on progress orders [140, 146]°, which organize
backlinks into a partial order, labeled with temporal variables. A
progress order that satisfies our alternative discharge condition en-
sures that there exists a temporal variable decreasing infinitely often
along every infinite path. The order identifies such a variable as the
C-greatest element for every SCS and, in turn, for every infinite path.
We show that this alternative discharge condition is equivalent to the
original one in Definition 7.

Definition 8 (Progress order). Let P = (D, L,X) be a pre-proof. A
progress order (L, 1) for P is a partial order (£,C) on the set of
backlinks and a labeling function ¢ : £ — Vi, assigning to each
backlink ¢ a temporal variable ¢(¢) such that, for every SCS S of G(P),
Ls has a C-greatest element.

Definition 9 (Alternative discharge condition). A progress order (£, C
,1) for a pre-proof P = (D, L,%) discharges P if for all { € L: ¢
progresses on (({), and ¢ preserves ((¢'), for all ¢ C ¢’

Note that every total order on backlinks is a progress order and
for total orders the discharge condition corresponds to a lexicographic
order on the temporal variables associated to the backlinks.

Algorithm 1 Returns a discharging progress order (£, C, ) for a pre-
proof P = (D, L,X) if one exists and fails otherwise.

1: let C be a partitioning of £ into sets inducing G(P)’s SCCs
2: return progress_order P (Id;) @ C

3:

4: function progress_order P (C) 1 C =

5. if dom(s) = £ then

6: return (L,C,1)

7. else

8: letLe€Cand/¢c Landi€ Vy, such that

9 ¢ progresses on i and all ¢/ € L preserve i
10:  if these do not exist then
11 return failure

122 else
13: let EI:EU{(E’,K) ‘ e L}
14: let Cy, be the partitioning of L \ {/} into subsets
15: that induce the SCCs of (N, UL\ {¢})
16: letC'=(C\{L})UCL
17: return progress_order P (C') (1[¢ — i]) C’
18:  end if

19: end if

3 [140, 146] use the term “induction orders”, which we avoid for clarity.
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Algorithm for Checking Discharge Condition

We give an algorithm that, given a pre-proof P = (D, L, %), computes
a discharging progress order (£, C, 1) if one exists and fails otherwise
(Algorithm 1). The algorithm first determines a partitioning C of the
set of backlinks £ into sets inducing G(P)’s SCCs (line 1) and then
calls the recursive function progress_order (line 2). Besides the (fixed)
pre-proof P, this function has three parameters: the current ordering
C on L, the current labeling of backlinks with temporal variables &,
and a set C of subsets of £, which partitions the set £\ dom(¢) into
the subsets that induce the SCCs of the graph (N,& U L\ dom(1)).
Initially, the relation C is the identity relation Id; on £ and the labeling
¢ (and hence dom(1)) is empty. Note that, since the initial partial order
is flat, all elements of £ are minimal.

Each recursion adds some ¢ € |JC to dom(¢). The idea is that
progress and preservation for all SCSs S of G(P) containing backlinks
in dom(1) is already covered (in the sense of Definition 7), while these
properties remain to be shown for the remaining SCSs, each of which
is induced by (a subset of) some L € C.

The algorithm terminates and returns (£, C, 1) when the labeling ¢
covers all of £ (line 6). Otherwise, it determines a backlink ¢ in one
of the sets L € C and an associated variable on which ¢ progresses
and which all elements in L preserve (lines 8 and 9). These exist if
P is a proof. Otherwise the algorithm fails (line 11). The backlink ¢
then becomes the greatest element of L (line 13). The partition C is
updated by removing the set L from C and replacing it by the sets in
the partitioning of L\ {¢} into subsets inducing the SCCs of the graph
(N,EUL\ {¢}) (lines 14-16). The mapping [¢ — i] is then added to ¢
and the function progress_order is recursively called with the updated
parameters (line 17).

Example 6 (Computing a progress order). Figure 8.4’s pre-proof has
four backlinks £ = {{1, ¢, ¢3,¢4}. Suppose the backlinks progress on
or preserve the temporal variables i, j, k, and [ as follows:

Backlink | Progresses | Also Preserves
q i
%) j i
l3 k i,j
Uy l i

We now use the function progress_order (Algorithm 1) to compute
a progress order as follows. Note that £ induces the single SCC of
the pre-proof graph. We start with Ty = Id., the identity relation on
L, 1y the empty labeling, and Cy = {L}. Observing that ¢; progresses
on i and all other backlinks preserve i, we place ¢; above the other
backlinks in C; and set 13 = 19[¢1 + i] as in Figure 8.5a. The updated
set C; then partitions the set of remaining backlinks { /5, (3, {4} into the
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12 1:1
/ \
i 2 |: j £y:1
|
1
2 2 ‘ ’ N ‘ l3:k
(a) Progress order after one iteration. (b) Final progress order.

Figure 8.5: Progress order construction for Figure 8.4’s pre-proof.

two sets {lp, (3} and {/4}, inducing the remaining SCCs (i.e., ignoring
¢1’s backlink in the pre-proof graph). Next, we see that ¢, progresses
on j, which /3 preserves. Hence, we place /> on top of /3 in C; and set
1p = 11[la — k]. Removing ¢»’s backlink in turn, C; contains the sets
{l3} and {/4}, inducing the only remaining SCCs. As {3 progresses
on k and /4 progresses on [/, we add these as mappings to the final
labeling ! in two additional recursive calls of progress_order.

The resulting progress order is depicted in Figure 8.5b. Note that,
since /4 does not preserve j and k, requiring a linear progress order as
a discharge condition would be too strong for this pre-proof.

The alternative discharge condition is equivalent to the original
one from Definition 7, as stated in the following proposition, which
we constructively prove based on Algorithm 1.

Proposition 1 (Equivalence of discharge conditions). A pre-proof
P = (D,L,X) is a proof if and only if there exists a progress order
(L, C,1) for P.

Proof. Let P = (D, L, %) be a pre-proof.

=-: Suppose that P is a proof. We show that Algorithm 1 constructs
a (forest-shaped) progress order (£, C, ).

The function progress_order maintains the following three invari-
ants.

1. (£, Cy) is a (forest-shaped) partial order with minimal elements
UCx and Cr U {dom(i)} partitions L.

2. For all £5 € £ inducing an SCS S of G(P), either Ls has a
Ci-greatest element or there exists some SCS S’ of G(P) such
that L5 C Ly and Ly € Cy.

3. All ¢ € dom(y) satisfy the progress and preservation conditions
of Definition 9.

All three invariants hold trivially for the initial Ty, ;9 and Cy. Sup-
pose now that the invariants hold for Cj and 4 and C. If dom(y) = £,
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then it follows from the invariants that (£, Cy, 1) is a progress order
discharging P.

Otherwise, the algorithm picks Ly € Cy, {x € Ly and i € Vyyp such
that ¢; progresses on i and all ¢’ € L preserve i. These exist by the
assumption that P is a proof. We show that the invariants also hold
for the newly constructed Ty 1, tg+1, and Ci1. It is easy to see that the
construction preserves the first and third invariants. For the second
invariant, consider any SCS S of G(P). From the induction hypothesis,
we know that either (i) £s has a Cj-greatest element ¢ or (ii) L5 C Lg
and Lg € Cy for some SCS S’ of G(P).

In case (i), we distinguish whether or not ¢ € L. If £ € Ly, then / is
a minimal element of T by invariant 1 and thus Lg = {¢}. Therefore,
¢ is trivially also the T 1-greatest element of Ls. Otherwise, we have
¢ ¢ Ly and thus / is also the Ty ;-greatest element of Ls.

For case (ii), let S’ be an SCS of G(P) such that L5 C Lg and Ly €
Cx. If Lg = Ly then we further distinguish whether or not ¢, € L. If
U, € Lg, then this is clearly the Ty ;-greatest element of Lg. If ¢ & L,
it follows from the construction of Cy1, in particular the partitioning
of Ly \ {¢x} into subsets inducing the SCCs of (N, £ ULi \ {It},y), that
there exists some SCS S” such that L5 C Lg» C Lg and Lgr € Cyy1.
Otherwise, if Lg # L, we have Lg € Ciy1 and, by assumption,
Ls C Lg.

<=: Suppose that there is a progress order (£, C, ) that discharges
P. Let S be an SCS of G(P). By Definitions 8 and 9 there is a
C-greatest backlink ¢ € Lg such that ¢ progresses on ((¢) and all
¢' C { preserve ((¢). Hence, P satisfies the discharge condition from
Definition 7 and is thus a proof. O

8.4 IMPLEMENTATION

Our implementation of cyclic proofs required a major overhaul of
Tamarin. We changed around 200 files, inserted 61,000 lines of code,
and deleted 24,000 lines of code. In this section, we describe this
implementation.

When Tamarin searches for proofs, it constructs a proof tree by
repeatedly executing proof methods, which typically apply sequences
of constraint reduction rules. At each node of the proof tree, Tamarin
can choose one from the many available proof methods to apply, and
heuristics guide which proof methods will be applied automatically
by Tamarin. In this section, we describe new proof methods and
heuristics for cyclic induction, and how our implementation verifies
that constructed pre-proofs are valid.
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8.4.1 Backlink Search

Cyclic Proof Methods

We implemented three new proof methods: search backlink, cut, and
minimize for cyclic proofs, the last of which combines weakening and
cut. When used naively, cut and weakening considerably enlarge
Tamarin’s search space. The set of formulas that could be cut in is
infinite, and theoretically, every single constraint could be weakened.
Thus, we must restrict the application of these proof methods.

When applying the proof method search backlink to a constraint
system I', our implementation searches for a substitution such that
some constraint system on the path from I' to the root subsumes
I'. Although we implemented several optimizations to the backlink
search (see the following section), backlink search is an instance of the
subgraph isomorphism problem, which is NP-complete [50]. Thus,
we cannot exclude instances where backlink search is computationally
expensive. We therefore implemented the backlink search as a proof
method so that users or heuristics can avoid backlink search when it
is too expensive.

When implementing the backlink search, we observed cases where
we expected a backlink, but where “trivial” formula constraints were
missing in the leaf constraint system. Whenever a backlink search finds
such a “close” match, our implementation suggests cutting in missing
constraints. Noteworthy, this is the only way for our implementation
to suggest the cut proof method.

Finally, minimize for cyclic proofs applies weakening combined with
cut to restore ordering information lost by weakening edge constraints.
Weakening can be required to find backlinks (see Section 8.2.3). The
proof method weakens all nodes reachable from the earliest node
containing a loop fact and weakens nodes that provide premises of
weakened nodes. This proof method implements a simple weakening
heuristic, which we discuss further in Section 8.5.2. Implementing
automated weakening has multiple benefits:

1. It enables finding some backlinks in the first place.

2. The resulting constraint systems are small, lowering the cost of
backlink search.

3. Weakening can lead to termination rather than non-termination
when no proof is found. As weakened constraints systems are
small, they are more likely to become solved. Tamarin will report
“unfinishable” for such constraint systems as they may not be
counterexamples. This informs the user that automated methods
to tackle loops failed. Without cyclic induction, failing to tackle
a loop typically results in non-termination.
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Backlink Search Algorithm

We optimized our implementation of backlink search between two
constraint systems by exploiting that substitutions must progress. To
ensure progress, a substitution associated to a backlink must map at
least some nodes to nodes that occur earlier in the constraint system.
We generalize this observation and implement backlink search as a
directed acyclic graph (DAG)-prefix search. DAG nodes are node con-
straints and f@i formula constraints. DAG edges are edge constraints
and i < j formula constraints. These DAGs capture many important
properties of constraint systems and provide structure to guide the
backlink search. The DAG-prefix search attempts to match the smallest
(w.r.t. to the edge-relation) nodes in the smaller DAG to the smallest
nodes in the larger DAG and iteratively refines the resulting substitu-
tion by attempting to match the children of already matched nodes
with one another. Should the substitution at some point match the
two DAGs, we check whether it also applies to remaining constraints.

To speed up the DAG-prefix search, we color the DAG nodes in
such a way that (a) we can check in constant time whether two nodes
have the same color, and (b) two nodes can be matched only if they
have the same color. Concretely, we color nodes annotated with rule
instances using their rule name and nodes not yet annotated with rule
instances with the list of action facts present at that node.

Technically, this search is incomplete. For example, it might be
necessary to map a smallest node in the one graph to some node
in the middle of the other graph. However, as constraint systems
are constructed incrementally, it is likely that we considered such
mappings earlier during proof search and need not consider them
again.

8.4.2  Proof Search

Heuristics

In this section, we describe how we adapted Tamarin’s heuristics
that rank proof methods during proof search. Tamarin supports
two main heuristics: a general-purpose “smart” heuristic and an
“injective” heuristic that is tailored for theories that heavily use loops.
We amended both of these heuristics as follows.

Tamarin recognizes some proof methods as looping in that after
applying them, the same proof method is typically available again. To
avoid immediate non-termination, such proof methods will be applied
in a round-robin fashion. We modified Tamarin’s heuristics such that
proof methods related to cyclic proofs are recognized as looping and
prioritized like other looping proof methods.

The other heuristic we implemented is that Tamarin will search
backlinks before minimizing for cyclic proofs. This ensures that weak-
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ening does not preclude backlink formation. Beyond that, we im-
plemented no further heuristics. This shows that cyclic proofs can
successfully be implemented with little guidance, as will become clear
when we present our case studies in Section 8.5.

Discharging Pre-Proofs

So far, we showed how we implemented proof methods for finding
backlinks, and how we rank these proof methods to find cyclic pre-
proofs. The final step of a cyclic proof is to check whether the pre-
proof discharges, i.e., whether Definition 9 applies. Implementing
Algorithm 1 directly proved to be challenging as Tamarin’s code-base is
recursion-oriented. We thus slightly modified Algorithm 1 as follows.

The proof search in Tamarin recursively associates nodes with
results, which can be: a solution was found, the constraint system is
unfinishable, contradictory, or has a backlink. Tamarin successively
applies proof methods until it encounters constraint systems for which
it can directly decide their result. These constraint systems become
the pre-proof’s leaves. Tamarin determines the inner nodes’ results
by combining their children’s results. For example, the results solved
and contradictory are combined to solved.

We modified Tamarin’s proof search such that it recursively checks
whether the pre-proof discharges. Our implementation inverts Algo-
rithm 1. Observe that Algorithm 1 non-deterministically splits a set of
SCCs into increasingly smaller SCSes to create a progress order. For
every SCS, Algorithm 1 checks that it discharges. Instead of decompos-
ing SCCs into SCSes, we compose SCSes to SCCs. Our implementation
initialy stores each backlink in a singleton SCS, checks that this SCS
discharges, and returns it. It then recursively composes SCSes into
larger SCSs, eventually becoming SCCs, while maintaining the invari-
ant that each SCS discharges. If at any point we fail to combine SCSes
into a discharging SCS, we mark the proof as unfinishable.

There might be progress orders found by Algorithm 1 that our
implementation does not find because our implementation traverses
the pre-proof’s SCSes following its tree structure, but Algorithm 1
searches non-deterministically. However, we never encountered proofs
for which our implementation failed to find a progress order.

85 CASE STUDIES AND DISCUSSION

We evaluated cyclic proofs on fourteen case studies, which include
two models of the Signal protocol. Our evaluation shows that cyclic in-
duction consistently reduces the number of auxiliary lemmas required
to prove a conjecture compared to trace induction. In fact, cyclic in-
duction typically requires no auxiliary lemmas. Many properties that
previously required auxiliary lemmas, can now be proven without
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them. In particular for Signal, we observe that cyclic induction reduces
model complexity, requiring fewer annotations, and simplifies proof
search. There are only five exceptions. For two lemmas, cyclic induc-
tion requires the same auxiliary lemmas as trace induction. For one
lemma, cyclic induction requires some, but fewer, auxiliary lemmas
than trace induction. For another lemma, cyclic induction requires
a different auxiliary lemma than trace induction. Finally, for one
lemma, we were unable to construct a proof when using cyclic induc-
tion; however, we specifically engineered this lemma to be unprovable
with cyclic induction. We discuss this further under limitations in
Section 8.5.2.

We divide our case studies into three sets. The first set contains
models that originate from Tamarin’s standard examples and three
theories developed by us to exhibit similar challenges as iMessage
PQ3 (see Section 7.4.3). These models were developed to exhibit
particular challenges of real-world looping protocols. The second set
contains two models of Signal. The third set contains what we call
destructor-based theories. We find that destructor-based theories are not
well-suited for cyclic induction proofs and discuss this further in our
limitations section.

We provide an overview of all case studies in Tables 8.1-8.3. We
analyzed the exact same theories and lemmas per induction scheme,
i.e., theories were not modified for specific schemes. Each table’s
tirst column shows to which set a theory belongs. Every set contains
multiple theories (second column), which contain multiple lemmas
(third column). We number lemmas for clarity. The columns grouped
by “Provable...” show whether a given lemma is provable with: no
induction (“w/01”), trace induction (“w/ TI"”), or cyclic induction (“w/
CI”). v means that the lemma is provable. (X) means that the lemma
is provable with the given scheme when using the referenced lemmas
from the same theory as the auxiliary lemmas. For example, the
lemma “Secrecy” from the “Crypto API” theory requires the lemma
“Invariant” as an auxiliary lemma (cf. Table 8.1). Some lemmas are
provable without induction but require inductive, auxiliary lemmas.
Because such lemmas are also provable with induction, we show the
auxiliary lemmas required to prove the conjecture with induction in
gray. No symbol means that we were unable to find a proof with
the respective scheme. In the two columns named “Auto,” we mark
whether Tamarin was able to automatically construct a proof when
using no induction or trace induction and when using cyclic induction
respectively. The two columns grouped by “Using...” show whether
the proof methods cut (S5) or minimize for cyclic proofs (Sy) were
used in a cyclic proof. “User” in the column for Sy marks that
user-specified weakening was required (see Section 8.5.2).
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85 CASE STUDIES AND DISCUSSION

8.5.1  The Signal Case Study

Signal is the most widely used, end-to-end encrypted messaging
protocol and uses a nested loop in its double ratchet construction. It is
so complex that previous attempts to prove its security in the symbolic
model either drastically abstracted the protocol or even developed
entirely new tools to tackle it. See Chapters 6 and 7 for a more detailed
introduction to double ratchet protocols.

To evaluate cyclic induction, we proved message secrecy for two
models of Signal (1 and 2). In our models of Signal, we assume
that clients use authentic long-term and pre-key material for session
establishment. Clients exchange messages over an insecure network,
and they derive encryption keys using the double-ratchet and X3DH
[110, 121]. We fully modelled the looping behavior of the double-
ratchet, without abstracting it in any way. However, we did not model
any features of Signal beyond the double-ratchet and X3DH, and, in
particular, did not model skipped messages. The two models differ in
that Signal 1 only allows long-term key reveal, whereas Signal 2 also
allows revealing pre-keys and ephemeral keys.

We formalize message secrecy for Signal as follows:

Vm,a,b,t.Send(m,a,b)@t
= —-3Jdx.K(m)@x
V Jx.LtkReveal(a)@x \V Jx.LtkReveal (b)@x
[V Jx.RevealPre(a)@x \V Ix.RevealPre(b)@x
V Jx.RevealEph(a,b)@x \V Jx.RevealEph(b, a)@x].

The part marked in square brackets applies to Signal 2 only. The
lemma formalizes that a message m sent from participant a to par-
ticipant b remains confidential unless one of the following key com-
promises occurs: (i) One participant’s long-term key was revealed
(LtkReveal), or (ii) pre-key material of one participant was revealed
(RevealPre), or (iii) ephemeral key material from a session between a
and b was revealed (RevealEph).

When using cyclic induction, we could prove message secrecy
as formalized above for both Signal case studies without requiring
any auxiliary lemmas. The proofs for the Signal case studies contain
55 backlinks for Signal 1 and 31 backlinks for Signal 2. Figure 8.6
depicts the proof graph of the Signal 2 case study and illustrates
a complex proof structure. Nevertheless, Tamarin can find a proof
automatically when supplied with a simple heuristic that instructs
Tamarin to deprioritize solving equations that can lead to case splits.
For example, such equations describe the structure of Diffie-Hellman
shared secrets, and we observed that solving these equations leads
to a state-space blowup during proof construction. With this simple
heuristic (along with the heuristics presented in Section 8.4.2), Tamarin
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Pattern 2 Pattern 3 Pattern 2

Pattern 1

Pattern 2

Pattern 3

Figure 8.6: Proof graph of Secrecy for Signal 2. We abstract repeating patterns.
The tree contains 31 backlinks.

finds a proof for each Signal case study in around 40 seconds, showing
that cyclic induction can indeed be used to find complex, inductive
proofs with little guidance.

For comparison, we also proved message secrecy using trace in-
duction for both Signal case studies. In both cases, we needed to
write three very similar auxiliary lemmas to prove message secrecy.
Moreover, writing these lemmas required changing the model substan-
tially, adding more annotations to help formalize the lemmas. Our
Signal case study shows that cyclic induction drastically simplifies the
analysis of protocols like Signal when compared to trace induction
and that it is easy to find a cyclic proof for both Signal case studies.

8.5.2 Limitations

Destructor-based Models

During our case studies, we found that cyclic induction often does not
improve, and sometimes even hinders, proof construction for models
that are destructor-based. We call models destructor-based if they use
not only looping constructor rules, but also looping destructor rules.
Constructor rules use the terms in their premises to construct larger
terms in their conclusions. In contrast, destructor rules destruct the
terms in their premises, creating smaller terms in their conclusions.
We encountered this limitation when proving the TESLA protocol, but
illustrate it on the smaller model called “Up and down.”

The “Up and down” model contains two loops. The first loop
generates a seed x and applies a hash function & an arbitrary amount
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Figure 8.7: Illustration of diverging terms. Blue nodes are constructor rules,
green nodes are destructor rules.

of times to that seed. The second loop starts when the first loop ends,
and non-deterministically often removes the hash function. Thus, the
first loop constructs a term h"(x), and the second loop destructs that
term resulting in h™(x) (m < n).

We call the problem of destructor-based models diverging terms.
During proof construction for destructor-based theories, one will often
encounter cases where both the construction and destruction loops
are instantiated, as illustrated in Figure 8.7. One will generally be
unable to find backlinks as the looping rules’ terms diverge. Observe
that the terms in the premises in Iy in Figure 8.7 are x and h(x).
When solving for the constructor rule’s premise, the term in the added
premise rule remains x. However, when solving for the destructor
rule’s premise, the term in the added premise rule is h(h(h(x))). Thus,
to find a substitution matching the previous, smaller constraint system,
we must both match x with x and h(x) with h(h(h(x))), i.e., x with
h(h(x)), which is impossible.

While we were able to construct proofs using cyclic induction
for destructor-based models, sometimes still reducing the number of
auxiliary lemmas (see Tables 8.1-8.3), we found it easier to construct
proofs for the TESLA case studies with trace induction than with cyclic
induction. TESLA is a broadcast authentication protocol for which
we analyze two variants. For TESLA, the auxiliary lemmas originally
provided for trace induction helped mitigate the issue of diverging
terms. However, finding backlinks when using these auxiliary lem-
mas requires care, e.g., weakening and backlink search must only be
applied to a few, selected nodes in the derivation tree, and applying
them elsewhere typically yields “unfinishable.”

Heuristics

Our heuristics are simple (see Section 8.4.2), but likely not optimal.
Excluding Signal and TESLA, all our case studies are automatically
provable when using trace induction but not when using cyclic in-
duction. This comparison, however, is unfair as many trace induction
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proofs require writing auxiliary lemmas, which is an inherently man-
ual task. With cyclic proofs, far fewer auxiliary lemmas are required.
Thus, cyclic induction paves the way for future work on improved
proof automation.

There are, however, exceptions, and proving some lemmas with
cyclic induction required auxiliary lemmas or user-specified weaken-
ing. User-specified weakening means that weakening is required to
find a proof, but using minimize for cyclic proof is insufficient because
it would weaken either too much or too little. We leave it as future
work to develop better heuristics for cyclic proofs.

Performance

Backlink search is NP-complete, and we thus cannot exclude that mod-
elers encounter theories where proof search takes considerable time.
In practice, however, we find that our implementation as presented in
Section 8.4 is performant. We timed proof construction on a MacBook
with an Apple M2 Max CPU and 32 GB of memory, and proving all
lemmas of our simple case studies took no longer than 0.25 seconds
per model. Even complex, real-world case studies such as Signal can
be proven quickly. Proving each Signal case study took around 40
seconds, but 30 seconds were spent on loading the theory and only 10
seconds on constructing the proof. Proving TESLA took 4 seconds.

We find that cyclic induction takes on average 0.35 seconds or 2%
respectively longer than trace induction per theory (2.4 seconds and
7% at maximum) with one exception. The exception is TESLA 1, which
takes 1.7 seconds longer (69% increase). Comparing the verification
times of cyclic and trace induction directly, however, is unfair as trace
induction requires more auxiliary lemmas than cyclic induction. First,
auxiliary lemmas must be conjectured by the user, and this process
cannot be easily timed. Second, we included the verification time of
auxiliary lemmas for cyclic induction. For example, if we only verify
Secrecy for cyclic induction but all lemmas for trace induction, then
the proof time for Signal 1 increases only by 0.29 seconds (1%) and
the time for Signal 2 decreases by 2.37 seconds (-5%).

8.6 RELATED WORK
8.6.1 Formal Analysis of Looping Protocols

For a comparison with DY*, see Chapter 6. We discussed related works
on the formal analysis of double ratchet protocols in the symbolic
model in Section 7.5.1. As we pointed out there, previous works
analyzing such protocols did either not capture their looping behavior
or abstracted them. Our formal analysis of iMessage PQ3 captured all
of PQ3’s details, but this required substantial manual intervention and
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stating 32 auxiliary lemmas (see Section 7.4.4). In contrast, our cyclic
proofs for Signal require no auxiliary lemmas and only one, simple
heuristic.

ProVerif’s induction was used to verify election protocols [43] and
protocols using authenticated data structures [44]. We discuss [44] in
future work. The election protocol model in [43] includes two loops,
one to fix the number of voters (non-deterministically counting up),
and one to tally their votes (counting down). These loops resemble
the “Up and down” model (see Section 8.5.2), for which we proved
properties similar to those in [43].

ProVerif’s induction is fairly new and there are few case studies
using it. It remains to be seen whether ProVerif’s induction scales
to protocols like Signal, which we proved as part of our case studies
with little effort. However, given that ProVerif’s induction mechanism
closely resembles Tamarin’s trace induction, we expect that there are
limitations similar to Tamarin’s.

8.6.2  Cuyclic Proof Systems and Tools

Proof Systems and Applications

Cyclic induction proof systems have been developed and used in
diverse areas of logic and computer science. These include first-order
logic with inductive predicates [32, 36], Peano arithmetic [143], Kleene
algebras [56, 132], modal and first-order p-calculi [6, 7, 141, 147],
higher-order fixed point arithmetic [89], equational reasoning about
functional programs [82], reasoning about process languages [55, 141],
program logics [33, 134, 156], and program synthesis [79].

In many cases, cyclic proof systems are at least as powerful as
systems based on explicit induction rules. An interesting theoretical
question is whether they are equivalent. This has been settled in the
positive for first-order y-calculus [147] and Peano arithmetic [143] and
in the negative for first-order logic with inductive predicates [17].

Tools for Cyclic Proofs

The Erlang Verification Tool was an early implementation of cyclic
proofs for proving first-order p-calculus properties of Erlang programs.
It supports induction, co-induction, and their combination (alternating
fixed points). Brotherston et al. [34] implemented a proof system
for entailment proofs in separation logic using a deep embedding in
HOL Light. Cyclist [35] is a generic stand-alone tool for cyclic proofs,
which can be instantiated to different logics, e.g., for program termi-
nation in separation logic [134] and temporal properties of pointer
programs [156]. CycleQ [82] is a tool for equational reasoning about
functional programs. Cypress [79] uses cyclic reasoning for the de-
ductive synthesis of heap-manipulating programs from separation
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logic specifications. Our work is the first use of cyclic proof systems
for security protocol verification. This required addressing several
challenges, as discussed in the introduction.

8.7 CONCLUSION

We have introduced cyclic induction reasoning in Tamarin, proved its
soundness, implemented it, and evaluated it on fourteen case studies,
showing that it can be used to easily find proofs for complex proto-
cols such as Signal. Cyclic induction exploits repeating patterns in
Tamarin’s constraints systems, and thereby avoids previous sources
of non-termination during proof construction. Moreover, cyclic in-
duction fundamentally changes how one constructs inductive proofs.
Tamarin’s previous induction scheme, trace induction, required writ-
ing inductive lemmas and could only be applied at the start of a proof.
In contrast, cyclic induction enables Tamarin to automatically, and
on-the-fly, discover inductive proofs. By finding repeating patterns
in graphs, cyclic induction avoids the need for auxiliary lemmas in
many practically relevant case studies. In contrast to writing auxiliary
lemmas, finding repeating graph patterns is much better suited for
automation.

Although our work is based on Tamarin, the ideas are, in principle,
transferable to other tools such as ProVerif. As ProVerif’s induction
is fairly new, there are few case studies using it. However, given that
ProVerif’s induction mechanism closely resembles Tamarin’s trace
induction, we expect that there are limitations similar to Tamarin’s.

FUTURE WORK We believe that cyclic induction can benefit from
further optimized heuristics and algorithms for constructing cyclic
proofs automatically. There are many promising options here. For ex-
ample, there is an enormous body of work on the problem of subgraph
matching (e.g., [31, 152, 166]). Applying results from this field could
further improve our implementation of backlink search. Additionally,
one could explore better search strategies. For example, backtrack-
ing when negated branches of a cut do not lead to a contradiction,
automated weakening of formulas that are not required to derive
contradictions in base cases, and much more. Another interesting line
of work is exploring whether cyclic induction can simplify proving
properties of protocols using authenticated data structures such as
Merkle Hash Trees in the symbolic model, which was initially sug-
gested by [44]. Finally, our cyclic induction framework does not yet
apply to Tamarin’s mode for proving observational equivalence [13].
Investigating whether it does also remains as future work.

158



CONCLUSION

In this thesis, we presented how to achieve provable, system-wide
security guarantees and advanced the state-of-the-art of protocol veri-
fication in the symbolic model.

In Part i, we presented two novel systems that use social authenti-
cation and accountability respectively to provably provide long-term
key authentication guarantees. We formalized social authentication in
Chapter 4, and proved that SOAP, a SOcial Authentication Protocol,
provides it. Moreover, SOAP is a practical design, which we show-
cased with two functional prototypes. In Chapter 5, we presented
and formally analyzed ADEM, an Authentic Digital EMblem, which
provides authentication guarantees by relying on an accountability
mechanism. ADEM implements a digital emblem to mark digital
infrastructure as protected under IHL, analogous to the emblems of
the Red Cross, Red Crescent, and Red Crystal.

In Part ii, we showed how complex, looping protocols can be for-
mally analyzed in their full complexity when using trace and cyclic
induction in the Tamarin prover. In Chapter 7, we formally proved
iMessage PQ3 secure using trace induction. We showed that PQ3 pro-
vides complex and fine-grained security guarantees against a powerful
adversary with quantum-computing capabilities. In Chapter 8, we
adapted cyclic induction to the security protocol domain. We showed
how cyclic induction can be used to prove protocols like Signal secure
while requiring considerably less effort than when using trace induc-
tion. With cyclic induction, Tamarin now can prove many properties
that previously required complex auxiliary conjectures.

ouTLOOK SOAP and ADEM are both great examples for when the
symbolic model has its advantages over the computational setting.
For one, we proved properties, such as social authentication, that are
difficult to faithfully capture in the computational setting. For the
other, we analyzed both systems during their development and the
aid of automated tools such as Tamarin made this possible in the first
place. Machine-assisted proof search enables quick iteration of designs
and desired security guarantees, helping protocol designers explore
both their problem and their solution space.

We hope that our contributions encourage the analysis of more
protocols during their design. We see two more directions that could
be explored to help reach this goal. First, automated symbolic provers
would benefit from better tooling for developing protocol models. Cur-
rent automated provers do not support modularization well, which in
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turn hinders incremental modeling, e.g. by assuming secure channels
at first and replacing them with more accurate models later. Modu-
larization likely requires support for composing different protocols.
There is a line of research establishing compositionality results (e.g.,
[47, 71, 72, 78]), however, these results have not yet been implemented
in state-of-the-art protocol verification tools. Additionally, protocol
models are often hard to test. Typically, modelers prove executability
lemmas, which show that a protocol model admits traces without the
adversary being active. However, we experienced that these lemmas
are sometimes harder to prove than actual security properties, and
they can easily miss modeling flaws.

Second, protocol models could be better integrated into the de-
velopment lifecycle of the protocol itself. There is research on con-
necting protocol implementations to protocol analysis, but proposed
approaches either require considerable manual effort [11, 148] or focus
on proving that a specific implementation provides certain, protocol-
level security guarantees [10, 21]. We suggest exploring how protocol
models created during protocol development and therefore before any
implementation work started can provide more value. For example,
they could serve as reference specifications or be used to generate test
vectors.
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TAMARIN’S CONSTRAINT REDUCTION RULES

Below we list the constraint reduction rules added in this thesis and
those from [53, 111].

Structural Constraint Reduction Rules added in Chapter 8

Sai T (OA)] |, (T
if all ¢ € A are guarded trace formulas such that fo,,,(¢)
S04, (') holds.

Sw: TAwT

if I' satisfies the well-formedness conditions WF2, WF3, and WF5
(see proof of Theorem 1).

N

Basic Constraint Reduction Rules
Sg: T~ HrieRHf’eacts(ri)(i : Vi,f - f/’ F)
if (f@i) € T and f # IK'(t) and f@i ¢p as(T).

Ski@: [~ HrieNDeracts(ri)(i i, KT (1) = £,T)
if (IK'()@i) € T and KT (H)@i ¢ as(T) and t & Vysg U Vyup U
Coub-

S=: I~ ||0€uny‘yzéars<r)(t1,t2)(FU)

if (tl = tz) €Tland 7515 tr.
if (i=j)eTandi#].

SL: | R
if L el
Sﬁ/@Z TW_L

if =(f@i) € T and (f@i) € as(T).

So—: I'~_1
if ﬁ(f] = tz) € I'and t; = b.

Sﬁ,i: '~ L
if~(i= i) eT.

178



TAMARIN’'S CONSTRAINT REDUCTION RULES

Soei T (i<]T) | (i=)T)
if =(j < i) € T and neither i <r jnori =j.

Sv: T (1) || (92,T)
if (p1V¢2) €T and @1 ¢ T and ¢, ¢ T.

Sn: T~ (¢1,92T)
if (p1 A @2) € T and not {¢1, 2} Cp T.

S3: T~ (p{y/x},T)

if (3x:s. @) € T and y:s fresh and ¢{w/x} ¢ T for every term
w of sort s.

Sy T~ (a(y),T)
if (VX.—(f@i)V ) € T and dom(c) = set(¥) and o(f@i) €
as(I') and o () ¢ T

S'> RS HriERHueidx(concs(ri))(i $ 1, (i’u) — (j,v),F)

if (f >y j) € Tand f # !K'(t) and f # !K*(t) and i fresh and
there isno ¢ s.t. (c — (j,v)) € T.

Sire: T~ (KI(H)@j,j <i,T)
if (IK'(t) >, i) € T and j fresh and t ¢f kn'(T).
K o D (i [Out(y)] = K ()], (1) > (j,0),T)

if (\K}(t) >, j) € T and i,y fresh and not Jc.(c — (j,v)) €
TV (c--+(j,v)) €.

S

S.,: T~ (c—pT
p.T)
if (¢ -=-» p) € T and i fresh and Vp'.(c — p’) ¢ T and Vx €
Vinsg- (¢, 1K (x)) ¢ cs(T).

Constraint Reduction Rules for Trace Induction

Slast,—< : [~ L
if (last(i)) € T'and i <r jand (j: ri) € T.

Slast,last N (l = j/ r)
if {last(i),last(j)} C T and i # j.

S ast i <jlast(j),T) | (last(j),j < i,T)

~ (i
(Iast( )) € T and j fresh and neither i <r k nor k <r i for any
(Iast(k)) erl.

) H HriENDHueidx(prems(ri))(i L, co— (i’ u)’ (i’l) ?
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Constraint Reduction Rules for Dependency Graph Well-Formedness
Dglbl : eri:ri/,I’
ifi:ri,i:ri’ CT and ri #g ri’.
Dg< . F ~ L
if i <ri.
DG..: T~ (f=f,T)
ifc—peTland (¢ f) €cs(T)and (p, f') € ps(T) and f #¢ f'.
DG.: T~ (f>yi,I)
if ((i,v),f) € ps(T) and (f >, i) ¢ T.
DGin: T~ (i=jT)
if {(i,v) — p,(ju) —p} CTandi# jand u = v, or
[~ 1
if instead u # v.
DGour: T~ (i =j,T)

if {c — (i,v),c — (j,u)} C T and c linear in I' and i # j and
u=uv,or

[~ 1
if instead u # v.
DGr: T~ (i=j,T)
if{i: @ -} Fr(m),j: @ -} Fr(m)} Ce T and i #j.

Constraint reduction rules for dependency graph normal form
N1: T~ L

if (i : i) € T and ri not | F-normal.
N2: T~ L

if (i 2 1KY ((t1, 12)) KT ({1, 02)) ] KT ((t1, 12))) €E T
N3i: T~ (i=],T)

if {IK'(t)@i, K" (t)@j} Cgas(T) UT and i # j.
N3 : T~ (i=jT)

if {((i,1),1K*(1)), ((j, 1), 'K*(£))} CEes(T) and i # j.
Ni: T~ (i<jT)

if ((i,1),'K¥(t)) € ¢s(T) and K'(t)@j €f as(T') UT and not
i<y ]
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Constraint reduction rules for subterms and natural numbers

The rules below were introduced in [53]. [53] also introduces two com-
plex constraint reduction rules FRESH—ORDER and MONOTONICITY,
which we omit here.

Srecurse @ '~ H1gign(t =t,T)| (tCt,7T)
ift T f(ty,...,ty) € I and f is neither a reducible operator nor
associate-commutative.

SAC_RECURSE : I '~ (Eix.to XxX=1to---o0 tn,l“) || ngign(t C ti,l")

ift C t1o---0t, € T and o is an associative-commutative
operator, not reducible, and o # +, and fy,...,f, are chosen
maximally w.r.t. o.

SNEG-RECURSE : I~ ngl‘§n<t #t,(tC 1), T)
if =(tC f(#y,...,tn)) € T and f is neither associative-commutative
nor reducible.

SNEG-AC-RECURSE : I ~ (Vxitox #tjo---ot,,T) | ngign_‘(t C
ti/ r)
if ~(tCto---0t,) € I and o is an associative-commutative
operator, not reducible, and o # 4, and ty,...,t, are chosen
maximally w.r.t. o.

Schan: T~ L
if {to) C xo,...,t» C x,} C T and x; is a syntactic subterm of
t(i41) mod (n4+1) and not below a reducible operator.

Sneg: T~ (—(sCt),T) || (s#¢,T)
if{=(scCt),tcr}CT.

SNEG_NAT: T~ (t Cs+1, F)
if ~(s:nat C t:nat) € T.

Snat: T~ (Fxs+x=1¢T) || T[s — s:nat]
if s C t:nat € T and s is a term of sort nat or a variable of sort
msg.

Sinvaup @ I~ L

if s C t € I' and the sorts of s and t are one of (i) fresh and nat,
(ii) pub and nat, (iii) arbitrary and pub, (iv) arbitrary and fresh.

Sutvpi: '~ ngign(ﬂi =b;,T)
if {so C fto,...,5n C ty} C T and a; = b; are determined accord-
ing to the UTVPI-algorithm (see [53]) and s; and ¢; are terms of
sort nat.
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