
Universität Leipzig

Fakultät für Mathematik und Informatik
Institut für Informatik

AGM-Style Contraction in
Dung-Logics for Argumentation

Frameworks

Bachelorarbeit

Leipzig, 5. September 2017

vorgelegt von:
Linker, Felix

B.Sc. Informatik

Betreuender Hochschullehrer:
Prof. Gerhard Brewka

Lehrstuhl für Intelligente Systeme

Zweitbetreut durch:
Dr. Ringo Baumann

Lehrstuhl für Intelligente Systeme

Contents

1 Introduction 1

2 Background 2
2.1 Abstract Argumentation . 2

2.1.1 Argumentation Frameworks 2
2.1.2 Semantics and Extensions 3
2.1.3 An Argumentation Framework Use Case 5

2.2 Monotonic Dung-Logics . 5
2.2.1 Kernels . 6
2.2.2 A Family of Dung-Logics 8

2.3 AGM-Theory of Belief Revision 11
2.3.1 Expansion . 13
2.3.2 Revision . 14
2.3.3 Towards Belief Sets . 15

3 Contraction Postulates 16

4 An Impossibility Theorem 19

5 Contraction Operators on Dung-logics 20
5.1 Naive Contraction . 20
5.2 Missing Contraction . 23

6 Revision and Contraction 27

7 Conclusion 28
7.1 Results . 28
7.2 The Rescue of Recovery . 28

Abstract

This thesis investigates the possibility of implementing an AGM-style
contraction operator for argumentation frameworks. We enhance the
works of Baumann and Brewka [1] who defined a family of monotonic
Dung-logics on argumentation frameworks for which they implemented
both AGM-style expansion and revision operators. The ordinary equiv-
alence of these logics coincides with strong equivalence in the ordinary
sense. The AGM-Theory of belief revision defined contraction operators
axiomatically via postulates. We rephrase these postulates to make them
applicable to Dung-logics and argumentation frameworks. We then can
show that there is no contraction operator on these monotonic Dung-
logics. However, we reflect on two concepts for contraction operators and
show why they are not satisfying all contraction postulates. After having
completed these considerations, we investigate how the k -revision opera-
tor given by Baumann and Brewka [1] relates to one of our contraction
operators. In the conclusion we consider further possibilities of achieving
contraction, i. e. changing the logic or changing the postulates.

1 Introduction

When dealing with the theory of intelligent agents sooner or later one will
come upon the problem of belief representation. An agent as an abstract entity,
dedicated to reaching certain goals and equipped with certain sensors, needs
some way to represent knowledge about its environment in order to meaningfully
decide what to do next, respectively to act.

In the subject of belief representation we will consider two concepts each of
which touches a different aspect of it, namely abstract argumentation and the
AGM-Theory of Belief Revision (named by its founders Alchourrón, Gärdernfors
and Makinson [2]). Whilst the former concept is about actual representation of
(possibly) conflicting beliefs, the latter handles the question of what to do when
beliefs are subject of change.

This thesis aims at enhancing on the works of Baumann and Brewka in [1].
In their research paper they combined aforementioned concepts of abstract ar-
gumentation and AGM-theory of belief revision. They presented two operators
that implement AGM-style expansion and revision on a a family of logics of
argumentation frameworks, the so-called Dung-Logics. We will expand their
results by investigating the possibilities and limitations of an operator that im-
plements AGM-style contraction on Dung-logics.

Before approaching this problem we will present the background of this thesis
followed by an overview of Baumann’s and Brewka’s groundwork.

1

2 Background

2.1 Abstract Argumentation

At its heart, the theory of abstract argumentation - invented by P. H. Dung
in 1995 [3] - is about representing conflicts between pieces of knowledge. The
core concept of abstract argumentation is the argumentation framework (AF)
which can be understood as a directed graph. An AF consists of two types of
elements: arguments (nodes) and attacks (edges). An argument represents a
piece of knowledge whereas an attack represents a conflict between two argu-
ments. AFs do not hold information about the essence of arguments or reasons
for why certain arguments conflict with each other. But the theory of abstract
argumentation does supply ways of reasoning with AFs. Using a concept called
semantics, one can decide which selection of arguments is consistent in regards
to this semantics.

In what follows, we will present the core concepts of abstract argumentation
accompanied by examples. We will conclude this section by giving an overview
on how the concepts we present are of use in the example of knowledge repre-
sentation for intelligent agents as outlined in section 1.

2.1.1 Argumentation Frameworks

Definition 1. An AF is a tuple F = (A,R) where A is the set of arguments, a
finite subset of a fixed infinite background set U and R is the set of attacks, a
subset of A×A. By A we denote the set of all AFs. We write A(F) for A and
R(F) for R.

Definition 2. Given two AFs F,G ∈ A we define each usual set-theoretical
operator ◦ ∈ {⊆,⊂,=} and ∪ component-wise:

F ◦G⇔ A(F) ◦A(G) ∧R(F) ◦R(G) (1)

F ∪G =
(
A(F) ∪A(G), R(F) ∪R(G)

)
(2)

Definition 3. Given an AF F ∈ A , a, b ∈ A(F) we say:

(1) a attacks b iff (a, b) ∈ R(F).

(2) a is defended by A′ ⊆ A(F) iff ∀b ∈ A(F) : (b, a) ∈ R(F) ⇒ ∃c ∈ A′ :
(c, b) ∈ R(F).

Definition 4. Given an AF F , for some A′ ⊆ A(F), A′+ denotes A′ ∪ {b |
(a, b) ∈ R(F) ∧ a ∈ A′}. We say A′ covers a ∈ A iff a ∈ A′+.

Definition 5. A set A′ ⊆ A(F) is conflict-free iff R(F) ∩ (A′ × A′) = ∅. The
set of conflict free sets of F is denoted by cf(F).

Example. Let us inspect F1.1 in figure 1 in detail. There, a is attacked by
itself and d whereas b is attacked by a, c and d. Thus c is defended by any set
in 2{a,c,d} that is not empty. All conflict-free sets of arguments are given by: ∅,
{b}, {c} and {d}.

2

a b

c

d

F1.1

Figure 1: AF Example

2.1.2 Semantics and Extensions

The notion of consistent sets of arguments as mentioned in the introduction of
this chapter is expressed by various types of so called extensions. An extension
is a subset of arguments of an AF that is consistent in regards to a certain
semantics. A semantics is a function which assigns to any AF F ∈ A a set of

extensions: σ : A → 22
U

, σ(F) ⊆ 2A(F). We consider nine semantics namely
admissible (ad), complete (co), preferred (pr), semi-stable (ss), stable (stb),
stage (stg), grounded (gr), ideal (id) and eager (eg).

a b

c

d

e

F2.1

a b c

def

F2.2

Figure 2: AF Examples for Semantics

In what follows, we will define the so-called σ-extensions E ∈ σ(F) of F =
(A,R) ∈ A with σ ∈ {ad, co, pr, ss, stb, stg, gr, id, eg} and E ⊆ A. For each
definition, we will give an example by using the AFs displayed in figure 2.

Definition 6. An admissible-extension is conflict-free and defends all of its
elements:

E ∈ ad(F)⇔ E ∈ cf(F) ∧ ∀a ∈ E : E defends a (3)

Example. When looking at F2.1 one can observe that d will not be part of
any admissible-extension. In this example, all admissible-extensions are given
by: ∅, {a}, {a, e}, {a, c}, {a, c, e}. For F2.2, neither c nor d can be part of any
admissible extension. In this example, all admissible-extensions are given by:
∅, {a, e}, {b, f}.

Definition 7. A complete-extension is an admissible-extension and includes all
arguments which are defended by the extension:

E ∈ co(F)⇔ E ∈ ad(F) ∧ ∀a ∈ A : E defends a⇒ a ∈ E (4)

3

Example. For F2.1, all complete-extensions are given by: {a, c}, {a, c, e}. For
F2.2, all complete-extensions are given by: ∅, {a, e}, {b, f}. In this case, the
empty set is a complete-extension because there is no argument not attacked
by another. By these examples you can see that demanding of an extension to
include all defended arguments does not simply lead to a selection of ⊆-maximal
admissible-extensions.

Definition 8. A preferred -extension is an admissible-extension that is⊆-maximal:

E ∈ pr(F)⇔ E ∈ ad(F) ∧ ∀E′ ∈ ad(F) : E 6⊂ E′ (5)

Example. Preferred-extensions can easily be read off by inspecting the admissible-
extensions. Looking at the admissible-extensions of F2.1, we see, there is only
one preferred-extension: {a, c, e}. For F2.2, all preferred-semantics are given by:
{a, e}, {b, f}.

Definition 9. A semi-stable-extension is an admissible-extension that is ⊆-
maximal in terms of its covered arguments:

E ∈ ss(F)⇔ E ∈ ad(F) ∧ ∀E′ ∈ ad(F) : E+ 6⊂ E′+ (6)

Example. Again, looking at all admissible-extensions of F2.1, we can figure out
the only semi-stable-extension {a, c, e}, with {a, c, e}+ = {a, b, c, d, e}. For F2.2,
all semi-stable-extensions are given by: {a, e}, {b, f}, each of which covers all
arguments but c or d respectively.

Definition 10. A stable-extension is an admissible-extension that covers all
arguments, i. e. is the ⊆-greatest admissible-extension in terms of its covered
arguments if existent:

E ∈ stb(F)⇔ E ∈ cf(F) ∧ E+ = A (7)

Example. Since we already noticed that {a, c, e} covers all arguments it is
also the only stable-extension of F2.1. For F2.2, there is no stable-semantics.
We already mentioned that each semi-stable-extension of F2.2 misses out on
covering one argument. Therefore neither of them is supremal in this regards.

Definition 11. A stage-extension is conflict-free and ⊆-maximal in terms of
its covered arguments, similar to preferred-extensions:

E ∈ stg(F)⇔ E ∈ cf(F) ∧ ∀E′ ∈ cf(F) : E+ 6⊂ E′+ (8)

Example. For F2.1, there is only one stage-extension: {a, c, e}. Also for F2.2,
the stage-extensions are the same as the preferred-extensions: {a, e}, {b, f}. But
note: This is not necessarily the case as it is not required of a stage-extension
to defend its elements.

Definition 12. A grounded -extension is a complete-extension which is⊆-minimal:

E ∈ gr(F)⇔ E ∈ co(F) ∧ ∀E′ ∈ co(F) : E′ 6⊂ E (9)

4

Example. The grounded-extension is a counterpart to preferred-extensions.
A grounded-extension is required to be a ⊆-minimal complete-extension and
is always uniquely defined. Therefore we can find the grounded-extensions by
simply looking at the complete-extensions. For F2.1, the grounded-extension is
given by: {a, c}. For F2.2, the grounded extension is given by: ∅.

Definition 13. An ideal -extension is an admissible-extension which is bounded
by the intersection of all preferred-extensions and is ⊆-maximal:

E ∈ id(F)⇔ E ∈ ad(F)

∧E ⊆
⋂
pr(F)

∧∀E′ ∈ ad(F) : E′ ⊆
⋂
pr(F)⇒ E 6⊂ E′ (10)

Example. Just like grounded-extensions, an ideal-extension is always uniquely
defined. Since there is only one preferred-extension which happens to be an
admissible-extension as well, the ideal-extension of F2.1 is: {a, c, e}. For F2.2,
the intersection of all preferred-extensions is empty. Therefore we end up with
the ideal-extension being: ∅.

Definition 14. An eager -extension is an admissible-extension which is bounded
by the intersection of all semi-stable-semantics and is ⊆-maximal:

E ∈ eg(F)⇔ E ∈ ad(F)

∧E ⊆
⋂
ss(F)

∧∀E′ ∈ ad(F) : E′ ⊆
⋂
ss(F)⇒ E 6⊂ E′ (11)

Example. The eager-semantics can be viewed as a variation of the ideal-
semantics and again is uniquely defined. This means there is also only one
eager-extension for F2.1: {a, c, e}. For F2.2 the eager-extension is given by: ∅.

2.1.3 An Argumentation Framework Use Case

Given a semantics σ and an AF F that represents knowledge about an environ-
ment, an agent can select consistent (in regards to σ) extensions of F to restrict
the space of what is possible about the world to assume. This is useful if the
agent has to deal with many and conflicting pieces of knowledge. Argumentation
frameworks do not allow for advanced reasoning techniques beyond that, i. e.
they can not reason about what is true. The theory of abstract argumentation
also does not imply a way to gauge the quality of an extension or the quality
of a semantics. This is subject of further theories and research or subject of
choice.

2.2 Monotonic Dung-Logics

The concept of semantics as just presented induces a logic that is implicit to
the theory of abstract argumentation.

5

Definition 15. Given a semantics σ and an AF F we define the models of F
as:

Modσ(F) = σ(F) (12)

An argumentation framework F ∈ A then implies another argumentation
framework G ∈ A iff Modσ(F) ⊆Modσ(G).

Definition 16. We say F and G are ordinary equivalent, i. e. F ≡σ G, iff:

Modσ(F) = Modσ(G) (13)

Definition 17. We say F and G are strongly equivalent, i. e. F ≡σE G, iff:

∀H ∈ A : Modσ(F ∪H) = Modσ(G ∪H) (14)

2.2.1 Kernels

Taking a naive approach, the problem of strong equivalence, i. e. to decide
whether two AFs are strongly equivalent, is a co-semidecidable problem. One
would have to iterate over all AFs and test whether strong equivalence holds
for each AF iterated to check whether two AFs are not strongly equivalent.
However, this inefficiency can be addressed by the concept of kernels.

Definition 18. Given an AF F ∈ A , a kernel is a function k : A → A where
each k(F) = F k =

(
A,Rk

)
is obtained from F by deleting certain redundant

attacks. We call F k-r-free iff F = F k.

a b

F3.1

a b

F3.2

a b

F3.3

a b

F3.4

Figure 3: Kernel examples

Given a semantics σ ∈ {stb, ad, gr, co} we define σ-kernels k(σ)(F) = F k(σ) =(
A,Rk(σ)

)
:

Definition 19. The stable-kernel has all attacks removed that are outgoing
from an argument with a self-loop:

Rk(stb) = R \ {(a, b) | a 6= b ∧ (a, a) ∈ R} (15)

Example. In figure 3 you can see four examples each of which will be used
to illustrate one of the kernel definitions. The dotted arrows indicate kernel-
redundant attacks to be deleted whereas the dashed arrows represent optional
attacks of which at least one must be present. F3.1 illustrates the base case
to apply a stable-kernelization to. Since a stable-extension must be conflict
free, a can not be part of any complete-extension. Furthermore it is required

6

of a stable-extension to cover all arguments. Therefore any attack not outgoing
from an argument, that is part of a conflict-free set, does not contribute to any
stable-extension. This is why those attacks might be deleted safely in regards
to stable-extensions.

Definition 20. The admissible-kernel has all attacks removed that are outgoing
from an argument with a self-loop but only if the other argument involved has
a self-loop as well or there is a respective reverse attack:

Rk(ad) = R \ {(a, b) | a 6= b ∧ (a, a) ∈ R ∧ {(b, a), (b, b)} ∩R 6= ∅} (16)

Example. By F3.2 you can see an illustration of admissible-kernalization. Again,
an admissible-extension must be conflict-free therefore a can not be part of any
admissible-extension. The attack (a, b) might be safely deleted because either
{b} is not conflict-free thus can not be part of an admissible-extension or b
defends itself against a.

Definition 21. The complete-kernel has all attacks removed that connect two
arguments with a self-loop:

Rk(co) = R \ {(a, b) | a 6= b ∧ (a, a), (b, b) ∈ R} (17)

Example. F3.3 is an example for complete-kernelization which is straightfor-
ward. A complete-extension is an admissible-extension that includes all elements
which are defended by itself. Neither a nor b can be part of any admissible- or
complete-extension since both have a self-loop. Therefore we do not need to
care about any attacks which take place among them.

Definition 22. The grounded-kernel has all attacks removed that are incoming
to an argument with a self-loop but only when the other argument involved as
a self-loop as well or there is a respective reverse attack:

Rk(gr) = R \ {(a, b) | a 6= b ∧ (b, b) ∈ R ∧ {(a, a), (b, a)} ∩R 6= ∅} (18)

Example. F3.4 illustrates a grounded-kernelization which is somehow inverse to
the admissible-kernelization. Remember, a grounded-extension is a ⊆-minimal
complete-extension. If the self-loop (a, a) is part of the AF, we end up with the
same situation as described in the example for definition 21. If (b, a) is part
of the AF and (a, a) is not, removing (a, b) leads to a change of the complete-
extensions. In the original AF {a} is a complete-extension, in the modified AF
this is not the case anymore. But in both cases ∅ remains to be a complete-
extension and is the ⊆-minimal complete extension as well. This could be
extended to larger AFs because removing (a, b) from the AF would not touch
the minimal complete-extension.

Theorem 1 ([4], [5]). For a semantics σ and two AFs F and G, strong equiv-
alence coincides with kernel identity:

(1) F ≡σE⇔ F k(σ) = Gk(σ) if σ ∈ {stb, ad, co, gr}

7

(2) F ≡σE⇔ F k(ad) = Gk(ad) if σ ∈ {pr, id, ss, eg}

(3) F ≡σE⇔ F k(stb) = Gk(stb) if σ = stg

This insight allows to efficiently decide whether two AFs are strongly equiv-
alent. Now one must just iterate over all attacks for each AF to compute the
respective kernels after which a simple comparison for equality decides over
strong equivalence.

2.2.2 A Family of Dung-Logics

Equipped with this new tool to decide on strong equivalence we define a logic
whose ordinary equivalence coincides with strong equivalence as introduced in
definition 17. We define a family of monotonic logics, so-called Dung-logics,
by introducing the notion of a k-model which in turn determines an abstract
consequence relation |=k constituting LkDung = (A , |=k).

Intuitively, a k -model of an AF F ∈ A is any AF which satisfies at least
the information of F not including redundancy, but may have more information
than encoded by F .

Definition 23. Given a kernel k, an AF F ∈ A and a set of AFs F ⊆ A , the
set of k-models is defined as:

Modk(F) =
{
G ∈ A | F k ⊆ Gk

}
(19)

Modk(F) =
⋂
F∈F

Modk(F) (20)

Definition 24. Given a set of AFs F ⊆ A :

(1) F is k-satisfiable iff Modk(F) 6= ∅.

(2) F is k-tautological iff Modk(F) = A .

Definition 25. The k-consequence relation |=k⊆ 2A ×A is defined as follows:

F |=k G⇔Modk(F) ⊆Modk(G) (21)

Definition 26. The k-consequence operation Cnk : 2A → 2A is given by:

F 7→ Cnk(F) = {G ∈ A | F |=k G} (22)

Definition 27. We say two AFs F,G ∈ A are k-equivalent iff they have the
same models:

F ≡k G⇔Modk(F) = Modk(G) (23)

Theorem 2 ([1]). Given two AFs F and G k-equivalence coincides with strong
equivalence:

(1) F ≡k(σ) G⇔ F ≡σE G if σ ∈ {stb, ad, co, gr}

8

(2) F ≡k(ad) G⇔ F ≡σE G if σ ∈ {pr, id, ss, eg}

(3) F ≡k(stb) G⇔ F ≡σE G if σ = stg

Definition 28. A Dung-logic LkDung is given by (A , |=k) or (A , Cnk), respec-
tively.

Although we just defined the family of Dung-Logics on sets of AFs, in the
following sections we will implement AGM-style operators on this logic only for
single AFs - not for sets of AFs. Therefore, in what follows we will drop braces
for any F ∈ A whenever we write {F} |=k G, G ∈ A or Cnk({F}). This also
leads to two insights which will be of use in later passages:

Lemma 1. Given two AFs F,G ∈ A :

F |=k G⇔ Gk ⊆ F k (24)

Proof.

F |=k G⇔Modk(F) ⊆Modk(G) by definition 25 (25)

⇔ ∀H ∈Modk(F) : H ∈Modk(G) (26)

⇒ F k ∈Modk(G) since F k ∈Modk(F) (27)

⇒ Gk ⊆ F k by definition 23 (28)

Gk ⊆ F k ⇒ ∀F ′ ∈ A : F k ⊆ F ′k ⇒ Gk ⊆ F ′k (29)

⇒ ∀F ′k ∈Modk(F) : F ′k ∈Modk(G) by definition 23 (30)

⇒Modk(F) ⊆Modk(G) (31)

⇔ F |=k G by definition 25 (32)

Lemma 2. Given an AF F ∈ A , then {F} is k-satisfiable.

Proof.

Modk({F}) =
⋂

F ′∈{F}

Modk(F ′) by definition 23 (33)

= Modk(F) (34)

= {G ∈ A | F k ⊆ Gk} by definition 23 (35)

= {F k} ∪ {G ∈ A | F k ⊂ Gk} (36)

6= ∅ (37)

9

F

(∅, ∅)

Figure 4: Structure of monotonic Dung-Logics

All Dung-logics are structurally similar. They include the same syntactical
and semantical elements which are both AFs. And they all induce the same
structure of their elements as illustrated in figure 4. There you can see the
k -tautological hence empty AF (∅, ∅) spanning the space of all k -models with
an arbitrary AF F ∈ A spanning its subspace of k -models. Any AF F ′ ∈ A
covering the cone of F would be a consequence of F , e. g. in particular (∅, ∅) is a
consequence of F : F |=k (∅, ∅). Although this figure successfully illustrates the
⊆-relation of AFs and their models, it still is just an illustration and therefore
inappropriate in a way. The figure conveys the impression that there are two
dimensions by which the space of models is spanned. This is not the case. One
could argue for arguments being the one and attacks being the other dimension
but first, the attacks are dependent on the arguments and second, there is no
clear order on those ”dimensions”. Also, this illustration suggests that for any
AFs F,G ∈ A there is a non-empty intersection of their models, i. e. {F,G} is
k -satisfiable, which is not the case. There are indeed k -unsatisfiable sets of AFs
- even with two elements. But therefore it is important to note that although
two AF’s cones might intersect in an illustration, this intersection can actually
be empty. We will still make use of this kind of illustrations since they are
suitable to convey key concepts of this thesis but we wanted to also make sure
the boundaries of these figures are known.

Example. In figure 5, there are two AFs given for which the set F containing
both of them, is k -unsatisfiable. This holds for every kernel presented in this
thesis but we will present this example for the complete-kernel k(co).

First, note that both F5.1 and F5.2 are k(co)-r-free. Any model F ∈Modk(co)(F)
must possess all elements of F5.1 and F5.2. But no k(co)-r -free AF can possess
the attack (a, a), (b, b) and (b, a) at the same time since kernelization would
remove (b, a) from the AF. Therefore F is k -unsatisfiable.

a b

F5.1

a b

F5.2

Figure 5: k -unsatisfiable AFs [1]

10

2.3 AGM-Theory of Belief Revision

Whereas the theory of abstract argumentation was about representing conflicts
between pieces of knowledge, the AGM-Theory of Belief Revision [2] (in short
AGM-Theory) is about resolving conflicts between pieces of knowledge which
is represented by so called belief sets. A belief set K is a set of propositional
formulas that is closed under deduction, i. e. Cn(K) = {φ | K |= φ} = K. The
AGM-Theory was contrived to solve the problem of updating existent beliefs
which arose because propositional logic is monotonic.

Definition 29. Given a logic L = (U , Cn) with a set of syntactical elements
U and a consequence operator Cn, L is monotonic iff for any Γ,∆ ⊆ U one
has:

Γ ⊆ ∆⇒ Cn(Γ) ⊆ Cn(∆) (38)

In short, monotony means that no matter what we expand our set of formulas
with, we will always be able to deduce those formulas which have already been
deducible before expanding the aforementioned set of formulas. When updating
beliefs, it would therefore not be suitable to simply expand our belief set with
new beliefs as they could never remove information from the belief set.

Let us consider an example belief set K = Cn({φ, φ→ ψ,ψ}) where φ means
It rained recently and ψ means The street is wet. What should we do to our
belief set if we walked out only to find out the street is not wet? We could
simply expand our belief set by adding ¬ψ: K = Cn({φ, φ → ψ,ψ,¬ψ}), but
this would lead to an inconsistency in our belief set since both K |= ψ and
K |= ¬ψ. And no matter what we expanded our belief set with, if at some
point we would have ¬ψ in it, this inconsistency would appear. The AGM-
Theory tackled this problem by introducing two new operations on belief sets:
revision and contraction. These two operations were introduced via postulates
that define what must hold for a resulting belief set. This means, there is
no unique right way to revise or contract a belief set and thus, there have been
many different implementations of these operators for propositional logic as well
as for other logics.

In this section, we will introduce the contraction and revision operators as
developed by Brewka and Baumann for Dung-logics. In a later section we will
approach belief set contraction for Dung-Logics, the core problem of this thesis.
Before we come to that, we have to redefine the concept of belief sets to match
Dung-logics.

Definition 30. A k -belief set is an AF F ∈ A .

We apply the AGM-Theory to Dung logics because the problem of updating
belief sets is applicable for Dung-logics as they are monotonic as well.

Theorem 3. Any Dung-logic LkDung = (A , Cnk) is monotonic, i. e. for any
F ,G ⊆ A one has

F ⊆ G ⇒ Cnk(F) ⊆ Cnk(G) (39)

11

Proof.

F ⊆ G ⇒ ∀F ∈ F : F ∈ G (40)

⇒Modk(G) =
⋂
F∈G

Modk(F)

=
⋂
F∈F

Modk(F) ∩
⋂

F∈G\F

Modk(F)

= Modk(F) ∩Modk(G \ F) by definition 23 (41)

⇒Modk(G) ⊆
(⋂
F∈F

Modk(F)
)

= Modk(F) (42)

⇒ ∀H ∈ A : Modk(F) ⊆Modk(H)

⇒Modk(G) ⊆Modk(H) (43)

⇒ ∀H ∈ A : F |=k H ⇒ G |=k H by definition 25 (44)

⇒ ∀H ∈ A : H ∈ Cnk(F)⇒ H ∈ Cnk(G) by definition 26 (45)

⇒ Cnk(F) ⊆ Cnk(G) (46)

Let us inspect this result in more detail as there is some tension between
definition 30 and theorem 3. Whereas monotony for propositional logic lead to
the problem of what to do when updating beliefs as the belief sets themselves
are monotonic in regards to the consequence operator Cn, this can not simply
be transferred to k -belief sets because not them but sets of k -belief sets are
monotonic in regards to the consequence operator Cnk. We can however transfer
monotony under application of Cnk to k -belief sets partially:

Proposition 1. For any AFs F,G ∈ A one has

F k ⊆ Gk ⇒ Cnk(F) ⊆ Cnk(G) (47)

Proof.

F k ⊆ Gk ⇒ G |=k F by lemma 1 (48)

⇒Modk(G) ⊆Modk(F) by definition 25

⇒ ∀H ∈ A : Modk(F) ⊆Modk(H)

⇒Modk(G) ⊆Modk(H) (49)

⇒ ∀H ∈ A : F |=k H ⇒ G |=k H by definition 25 (50)

⇒ ∀H ∈ A : H ∈ Cnk(F)⇒ H ∈ Cnk(G) by definition 26 (51)

⇒ Cnk(F) ⊆ Cnk(G) (52)

12

Generally one does not have F ⊆ G ⇒ Cnk(F) ⊆ Cnk(G) which can be
shown by a simple counter example. This example can be derived directly from
one of the illustrations for kernelization in figure 3. Consider the AFs F6.1

and F6.2 as illustrated in figure 6. Note that F6.1 is k(ad)-r -free but F6.2 is
not as (a, b) would be removed during kernelization. Obviously it applies that
F6.1 is a sub-AF of F6.2 but this does not hold for their respective kernels.
Therefore we have F6.2 6∈ Cnk(ad)(F6.1) but F6.2 ∈ Cnk(ad)(F6.2) which leads to
Cnk(ad)(F6.1) 6⊆ Cnk(ad)(F6.2).

This counter example however is applicable only to attacks that play a role
in kernelization as any other attack is covered by proposition 1. This means
that one can not generally remove information from an AF by adding new
elements to it which is the key ”problem” of monotony causing the necessity of
the operators introduced by the AGM-Theory.

a b

F6.1

a b

F6.2

Figure 6: Counter example illustration

2.3.1 Expansion

In the AGM-Theory, the expansion operator is essential in the way that both
revision and contraction refer to it. The expansion operator initially was defined
semantically. It was required of the expansion result to possess the intersection
of the two belief sets K1 and K2 as its own models. This was reflected by the
union of K1 and K2. For Dung-logics one then has:

Definition 31. A function ◦k : A ×A → A ∪ {⊥} with (F,G) 7→ F ◦k G is a
k-expansion iff Modk(F ◦k G) = Modk(F) ∩Modk(G).

F G

(∅, ∅)

Figure 7: Dung-logic expansion

13

The set of models sought when expanding F ∈ A with G ∈ A is illustrated
in figure 7 as grey-shaded area. The expansion operator should result in the
AF indicated by the intersection point of the cones of F and G. In most cases,
k -expansion is straight-forward and can be given by the union of F and G but
in some cases, there is no AF that the k -expansion can result in. This is the
case whenever {F,G} is k -unsatisfiable, i. e. when Modk(F) ∩Modk(G) = ∅,
as an k -unsatisfiable AF does by lemma 2 not exist. We map to a new symbol
⊥ that denotes the k -unsatisfiability of the expansion result in this case.

Definition 32. The function +k : A ×A → A ∪{⊥} is a k -expansion operator
and defined as:

(F,G) 7→

{
⊥ if Modk(F) ∩Modk(G) = ∅
F k ∪Gk else

(53)

Let us reflect on why this method works for any AFs F,G ∈ A given
Modk(F) ∩Modk(G) 6= ∅. Baumann and Brewka [1] were able to show that
Modk(F) ∩Modk(G) 6= ∅ ⇔ F k ∪Gk is k-r -free. This means that all elements
of F k and Gk are preserved when they are unified into one AF. This also means
that whenever we have an AF H ∈Mod(F +k G) we know that Hk ⊆ F k ∪Gk
as we also have H ⊆ F k and H ⊆ Gk. This is why we can map F +k G to
F k ∪Gk.

2.3.2 Revision

The intuition behind revising two belief sets can not be conveyed as simply as
the intuition behind the expansion operator. What comes closest to the idea of
revision is the notion of updating a belief set with a new belief without leading
to inconsistencies. Given a propositional belief set K and a new belief φ we
want to update our belief set with, we ask from the result of a revision operator
∗ to deduce φ and to not deduce ¬φ: K ∗ φ 6|= φ ∧K ∗ φ |= φ.

As already mentioned in the introduction, the revision and contraction op-
erators were not defined invariably but outlined by postulates. We will not give
a complete list of all postulates established for the revision operator but skip
directly to the implementation of a revision operator ∗k(stb) and the ideas that
establish it. For an overview over the postulates of belief revision we refer the
reader to the works of Baumann and Brewka [1].

When revising F ∈ A with G ∈ A , the concept that underlies this operator
is to find a ⊆-maximal AF ”between” Gk and Gk ∪ F k. One could also say
revising F with G means to expand G with the ⊆-maximal AF H in F that
leads to a consistent AF. This allows for preserving as much information as
possible from F whilst including G in total. Such an ⊆-maximal AF H is given
by the concept of maximal k-r -free sets.

Definition 33. Given two AFs F,G ∈ A we define the set of maximal k-r-free
sets w.r.t. F and G as follows:

Mk
FG = max

⊆

{
Gk ∪H | H ⊆ F k ∧Gk ∪H is k -r-free

}
(54)

14

It has already been shown by Baumann and Brewka [1] that for any AFs

F,G ∈ A , |Mk(stb)
FG | = 1.

Definition 34. The function ∗k(stb) : A ×A → A is a k(stb)-revision operator
and defined as:

(F,G) 7→ I, Mk(stb)
FG = {I} (55)

F

G

H

(∅, ∅)

Figure 8: Dung-logic revision

Figure 8 illustrates the revision of F with G. There you can see the space
of possible sets leading to a ⊆-maximal extension of G marked by dotted lines
below F . An example for H is given by dashed lines. In this example, the space
of models resulting from Gk(stb)∪H or F ∗k(stb)G is marked by the dotted area.
The models of F ∗k(stb) G cover at least the area colored in dark-gray and at
maximum the area colored in light-gray.

2.3.3 Towards Expansion and Revision Operators for Belief Sets

The reader might have stumbled over the fact that our definition of belief sets
involves AFs only. This might seem counterintuitive because our belief sets do
not include syntactical elements but are syntactical elements of the respective
logic. This however is not as counterintuitive as it might seem. The idea behind
belief sets is to match theories. It can be argued about what exactly a theory is
in regards to abstract argumentation. But it is not unreasonable to take an AF
as theory as we have shown in section 2.1.3 where we presented an application
of AFs. AFs encompass the conflicts between various pieces of knowledge and
therefore might be taken as a theory themselves. This notion is also part of the
formalization of AFs where the arguments form a set.

But it is possible - to some extent - to widen the definition of belief sets
such that it matches sets of AFs. Before we come to that, we will present a key
insight in the structure of Dung-logis.

15

Proposition 2 ([1]). Any infinite set of AFs F ⊆ A is k-unsatisfiable.

Proof. Let us assume there is a k -satisfiable, infinite set of AFs F ⊆ A . Since
F is k -satisfiable we have Modk(F) 6= ∅.

Given an arbitrary G ∈Mod(F) we have:

G ∈Mod(F) (56)

⇔ G ∈
⋂
F∈F

Mod(F) by definition 23 (57)

⇔ ∀F ∈ F : G ∈Mod(F) (58)

⇔ ∀F ∈ F : F k ⊆ Gk by definition 23 (59)

By definition 1 we know that AFs are finite. This means that for any AF
F ∈ A the set Fsub = {G ∈ A | Gk ⊆ F k} is finite as it is bounded by the
cartesian product of 2A(F) and 2R(F), both of which are finite as well. Looking at
(59) we therefore can now that F is finite which contradicts our assumption.

This insight allows us to phrase a new expansion operator on sets of AFs

+̃
k

: 2A ×A → 2A :

({F1, ..., Fn}, G) 7→

{
F1 +k ...+k Fn +k G if Mod({F1, ..., Fn, G}) 6= ∅
F ∪ {G} else

(60)

This is possible only because we know that F is finite when Mod(F) 6= ∅
which allows us to gradually expand its elements by one another. If F was
infinite thus unsatisfiable it would not be possible to ”sum” the elements of F
”up”. The result of the expansion would need to possess the same set of models
as F which is impossible as by lemma 2, a single AF is always satisfiable.

The idea of this new expansion operator can now be used to define a partial
k-revision operator ∗̃k : 2A ×A → 2A :

(F , G) 7→

{
(F1 +k ...+k Fn) ∗k G if Mod(F) 6= ∅
undefined else

(61)

Further elaboration must be spent on what to do when revising k -unsatisfiable
sets since they can not be mapped to single AFs which are always k -satisfiable.
This section however showed that the k -expansion and k -revision operators of
Baumann and Brewka are expressive already.

3 Contraction Postulates

The contraction operator implements the idea of rejecting something what was
formerly accepted as true. In this section we will list the six postulates for

16

propositional logic belief sets which have been phrased in the AGM-Theory
to define contraction operators and which aimed at modeling the real world
procedure of rejecting a belief. Then we will rephrase each one of them to
make them applicable to Dung-logics. Before doing this, we will reflect on a
characteristic of sets of propositional formulas closed under Cn which will allow
us to adequately rephrase those postulates.

Lemma 3. Given two sets of propositional formulas Γ,∆ with Γ = Cn(Γ) and
∆ = Cn(∆) one has

Γ ⊆ ∆⇔ ∆ |= Γ (62)

Proof.

Γ ⊆ ∆⇒ ∀φ ∈ Γ : φ ∈ ∆ (63)

⇒ ∀φ ∈ Γ : ∆ |= φ (64)

⇒ ∆ |= Γ (65)

∆ |= Γ⇒ ∀φ ∈ Γ : ∆ |= φ (66)

⇒ ∀φ ∈ Γ : φ ∈ ∆ by assumption ∆ = Cn(∆) (67)

⇒ Γ ⊆ ∆ (68)

Given a belief set K, formulas φ and ψ and an expansion operator +, there
are six postulates:

K1 K ÷ φ is a belief set (closure)

K2 K ÷ φ ⊆ K (inclusion)

K3 φ 6∈ K ⇒ K ÷ φ = K (vacuity)

K4 6|= φ⇒ φ 6∈ K ÷ φ (success)

K5 K ⊆ (K ÷ φ) + φ (recovery)

K6 |= (φ↔ ψ)⇒ K ÷ φ = K ÷ ψ (equivalence)

Given the AFs F,G,H ∈ A we can rephrase the AGM contraction postulates
for a kernel k.

Lemma 1 shows us that in general for k -belief sets one does not have F ⊆
K ⇔ K |=k F or F = G⇔ F ≡k G both of which hold for belief sets which you
can see by lemma 3. This means we need to translate each postulate involving
some relation ∼∈ {∈,⊆,=} to their equivalent logical relation in {|=,≡}.

The closure postulate demands nothing more than that the result is again a
belief set. Hence we can rephrase it to:

K1 F ÷k G is an AF

17

The inclusion postulate demands of a contraction to never add information.
Lemma 3 allows us to rephrase this postulate to use the |= relation K ÷ φ ⊆
K ⇔ K |= K ÷ φ which in turn allows us to apply this postulate to k -belief
sets:

K2 F |=k F ÷k G which by lemma 1 equals (F ÷k G)k ⊆ F k

The vacuity postulate demands of a contraction to not change the belief
set if the belief set to be contracted is not entailed by the original belief set.
φ 6∈ K ⇒ K ÷ φ = K equals K 6|= φ ⇒ K ÷ φ ≡ K which can directly be
adopted for k -belief sets:

K3 F 6|=k G⇒ F ÷k G ≡k F

The success postulate demands of a contraction to actually remove the con-
tracted element’s information from the belief set, meaning that it should not be
deducible from the resulting belief set. This is only restricted to be not appli-
cable to the removal of a tautology since a tautology is always deducible. The
equivalent in terms of logical relations to 6|= φ⇒ φ 6∈ K÷φ is 6|= φ⇒ K÷φ 6|= φ.
Therefore the translation of this postulate to match k -belief sets is:

K4 6|=k G⇒ F ÷k G 6|=k G which equals 6|=k G⇒ Gk 6⊆ (F ÷k G)k

The recovery postulate demands that the belief set resulting from an expan-
sion with a formerly contracted element must possess at least the information
that was present before given element was contracted from the belief set. The
intuition behind this postulate was to ensure minimal contraction. However,
there were many people who pointed out this postulate was not ideal in this
regard and furthermore was problematic in itself. In section 4 you will see why
this postulate is problematic for Dung-logics and k -belief sets and in section 7
we will discuss this postulate and its issues more in detail.

For K ⊆ (K ÷ φ) + φ lemma 3 directly applies, therefore we end up with
(K ÷ φ) + φ |= K which translates to:

K5 (F ÷k G) +k G |=k F which equals F k ⊆
(
(F ÷k G) +k G

)k
The equivalence postulate demands of a contraction to result in the same

belief set if performed with equivalent elements. Under use of logical relations,
|= (φ↔ ψ)⇒ K ÷ φ = K ÷ ψ translates to φ ≡ ψ ⇒ K ÷ φ ≡ K ÷ ψ. Applied
to k -belief sets one has:

K6 G ≡k H ⇒ F ÷k G ≡k F ÷k H

Figure 9 shows an illustration of two possible nearly optimal contractions.
There is no optimal contraction in regards to the postulates K1-K6 - these only
know a successful contraction but it should be goal of any contraction operator
implementation to do a minimal contraction in a certain sense, e. g. try to
end up with a ⊆-maximal AF. Two possible results of contracting F with G
are illustrated by dashed lines, F ′ and F ′′, their respective space of models is

18

G

F

F ′

F ′′

(∅, ∅)

Figure 9: Dung-logic contraction

marked by the patterned areas. It is possible to move F ′ and F ′′ ”up” or ”down”
along the outside of F but it is crucial for them to not include the models of G
in their space of models since this would result in an unsuccessful contraction.
F ′ and F ′′ could also be shifted more to the inner of F . It would however not
be possible to move them out of F since this would conflict with the inclusion
postulate.

4 An Impossibility Theorem

We can show that there is no contraction operator on AFs for Dung-logics. The
problem herein lies in the recovery postulate mainly. AFs have two layers of
information, one of which is dependent on the other. Postulate K2 demands
of a contraction to never add information. This means we can only remove
information of an AF when contracting. If we have to remove an argument
that has attacks dependent on it which are not part of the contracted AF, we
can not expand the contraction result with the contracted AF and restore all
information as demanded by K5.

Theorem 4. There is no operator ÷k : A × A → A such that ÷k satisfies
K1-K6.

Proof. Let us assume there is such a binary operator ÷k and consider the AFs
F = (A, {(a, a) | a ∈ A}) and G = (A, ∅) with A 6= ∅. Obviously F |=k G.

If we wanted to successfully contract F with G, we would have to remove
some elements in A or R(F) since ÷k satisfies K2 and therefore one has (F ÷k
G)k ⊆ F k.

Since G 6= (∅, ∅) and therefore 6|=k G we also have Gk 6⊆ (F ÷k G)k ⊆ F k

because ÷k satisfies 6|=k G⇒ F ÷k G 6|=k G, namely K4.

19

Because R(G) = ∅ and therefore for any H ∈ A , we have R(G) ⊆ R(H),
our only chance of achieving K4 lies in removing some A′ ⊆ A in F . Thus, a
respective AF F ′ not entailing G can be identified by F ′ = (A\A′, R(F)\{(a, a) |
a ∈ A′}).

We have to remove attacks involving arguments of A′ in F because F ′ needs
to stay an AF, i. e. it must hold that R(F ′) ⊆ A(F ′) × A(F ′). Otherwise we
would violate postulate K1.

Now lets observe what holds regarding K5 using an expansion operator as
defined in definition 32. Since ÷k satisfies K5 we must end up with F ′+kG |=k

F which equals F k ⊆ (F ′ +k G)k. Note that Mod(F ′) ∩Mod(G) 6= ∅ since
G ⊆ F ′ and that F ′ and G are both k -r-free.

F ′ +k G (69)

=F ′k ∪Gk by definition 32 (70)

=F ′ ∪G by assumption (71)

=(A \A′, R \ {(a, a) | a ∈ A′}) ∪G (72)

=
(
(A \A′) ∪A, (R \ {(a, a) | a ∈ A′}) ∪ ∅

)
(73)

=(A,R \ {(a, a) | a ∈ A′}) (74)

6⊇(A,R) = F (75)

This contradicts our assumption that ÷k satisfies K1, K2, K4 and K5, in
particular K5.

To be precise, note that this proof shows that there can not be a contrac-
tion operator satisfying the postulates K1, K2, K4 and K5 which is a weaker
proposition than our initial theorem 4. But this theorem still is a consequence of
this weaker proposition and matches our essential point more accurately which
is that there is no AGM-style contraction operator on Dung-logics.

5 Contraction Operators on Dung-logics

Although there is no contraction operator that satisfies K1-K6 (as shown in 4),
we will now present two possible contraction operators each of which violates
only one postulate.

5.1 Naive Contraction

In this section we will define a naive contraction operator −̇k. Its name arises
from the simple concept that underlies this operator. As indicated in the proof
for theorem 4, for two AFs F,G ∈ A it suffices to remove some set A′ ⊆ A(G)
from F when contracting G from F to accomplish success, provided F |=k G.
This leaves us with the problem to decide which elements to remove whilst
ensuring that a contraction result can be determined deterministically. Without

20

a strict order on the set of all arguments U this seems to be unobtainable. The
naive contraction operator avoids this problem by being naive, i.e. by removing
every element of G from F when contracting F with G. We will define this
operator via an assisting operator F −G that removes all arguments of G in F .

Definition 35. We define an operator − : A × 2U → A :

(F,A) 7→ (A(F) \A,R(F) ∩ (A(F) \A)2) (76)

Definition 36. We define the naive-contraction operator −̇k : A ×A → A as:

(F,G) 7→

{
F k −A(G) if F |=k G

F k else
(77)

Theorem 5. The naive-contraction operator −̇k satisfies K1-K4 and K6 but
does not satisfy K5.

In what follows we will give proof of −̇k satisfying every postulate but K5,
i.e. recovery, and give a counter-example for K5.

K1 F ÷k G is an AF (closure)

Proposition 3. The naive-contraction operator −̇k satisfies K1.

Proof. Both F k and F k −A(G) are AFs, therefore F −̇kG is an AF.

K2 F |=k F ÷k G which equals (F ÷k G)k ⊆ F k (inclusion)

Proposition 4. The naive-contraction operator −̇k satisfies K2.

Proof. If F 6|=k G, one has F −̇kG = F k and therefore obviously F |=k F÷kG ≡k
F k.

If however F |=k G, with A′ = A(F) \A(G) we have:

F −̇kG (78)

=F k −A(G) by definition 36 (79)

=(A′, R(F)k ∩A′2) by defintion 35 (80)

=(A′, R(F)k \ Ā′2) (81)

⊆(A(F), R(F)k) = F k (82)

K3 F 6|=k G⇒ F −̇kG ≡k F (vacuity)

Proposition 5. The naive-contraction operator satisfies K3.

21

Proof. Be definition 36 we have F −̇kG = F k if F 6|=k G and therefore F −̇kG ≡k
F .

K4 6|=k G⇒ F ÷k G 6|=k G which equals 6|=k G⇒ Gk 6⊆ (F ÷k G)k (success)

Proposition 6. The naive-contraction operator −̇k satisfies K4.

Proof. We assume F |=k G and G 6= (∅, ∅) because otherwise, there is nothing
to show.

Since A(G) 6= ∅ we know that A(G) 6⊆ A(F) \ A(G) leading to Gk 6⊆
(F −̇kG)k ≡ F −̇kG 6|=k G.

K5 (F ÷k G) +k G |=k F which equals F k ⊆
(
(F ÷k G) +k G

)k
(recovery)

Proposition 7. The naive-contraction operator does not satisfy K5.

Proof. A counter-example for K5 can easily be given as we have effectively done
this in section 4: Let F = (A, {(a, a) | a ∈ A}), G = (A, ∅). Note that F is
k -r-free since kernelization never removes self-loops.

When contracting F with G one ends up with: F −̇kG = (∅, ∅). But (∅, ∅)+k

G = G and G 6|=k F since Gk 6⊆ F ⊆ F k.

Example. In figure 10 you can see an illustration for a counter example similar
to the one used in proposition 7. There, F10.3 is the result of F10.1 contracted
with F10.2. As you can see, expanding F10.3 with F10.2 would lead to F10.4

meaning the recovery postulate can not be uphold.

a b

F10.1

b

F10.2

a

F10.3

a b

F10.4

Figure 10: Counter example illustrations

K6 G ≡k H ⇒ F ÷k G ≡k F ÷k H (equivalence)

Proposition 8. The naive-contraction operator −̇k satisfies K6.

Proof. For any AF H ∈ A one has H ≡k G⇒ A(H) = A(G) since kernelization
only removes redundant attacks and no arguments. Given F |=k G one has:

F −̇kG (83)

=F k −A(G) by definition 36 (84)

=F k −A(H) by assumption (85)

=F −̇kH by definition 36 (86)

Given F 6|=k G it applies that F 6|=k H since H ≡k G leading to F −̇kG =

F k = F −̇kH.

22

5.2 Missing Contraction

Building up on the idea of the counter-example for K5 given in section 5.1 one
might hit on the idea of not removing those arguments that hold information
which is not present in the contracted AF. This should - at least on first glance -
preserve recovery. Although we have already shown that there is no contraction
operator satisfying all postulates, we might also show why this idea is doomed
to fail, as well.

Given AFs F,G ∈ A . The idea of arguments that hold additional informa-
tion is expressed in the definition of missing-arguments in G regarding F , i. e.
they have some information missing in G that is present in F .

Definition 37. The set of missing-arguments in G in respects to F , MisF (G)
is defined as:

MisF (G) =

{
a ∈ A(G) | ∃a′ ∈ A(F) :(a, a′) ∈ R(F) \R(G)

∨ (a′, a) ∈ R(F) \R(G)

}
(87)

a

b

c

d

F11.1

b

c

d

F11.2

Figure 11: Missing-arguments example

Example. Let us look at an example for missing-arguments. In figure 11, one
can see two AFs. The missing-arguments of F11.2 in regards to F11.1 are given by
{b, d}. b is a missing-argument, because F11.2 does not contain the attack (b, a).
Whereas d is a missing-argument, because F11.2 misses the self-loop (d, d). The
self-loop (c, c) which is part of F11.2 but not F11.1 has no influence on the set of
missing-arguments because we only consider attacks missing in F11.2.

Using this definition we define an operator that removes only those argu-
ments of an AF in another AF that are involved in the same attacks in both
AFs.

Definition 38. The operator \Mis : A ×A → U is defined as:

(F,G) 7→
(
A(F) \A(G)

)
∪MisF (G) (88)

Definition 39. The missing-contraction operator −̂k : A ×A → A is defined
as:

(F,G) 7→

{(
F k \Mis G

k, R(F)k ∩ (F k \Mis G
k)2
)

if F |=k G

F k else
(89)

23

Theorem 6. The missing-contraction operator −̂k satisfies all postulates K1-
K3 and K5-K6 but does not satisfy K4.

Again, we will start our elaboration of the newly introduced missing-contraction

operator −̂k by giving proof for the realization of all postulates but K4, namely
success, for which a counter example will be given.

K1 F ÷k G is an AF (closure)

Proposition 9. The missing-contraction operator −̂k satisfies K1.

Proof. If F 6|=k G, F −̂kG = F k which is an AF.

If F |=k G one has F −̂kG = (A,R(F)k ∩ (A × A)), A = F k \Mis G
k which

obviously is an AF because R(F)k ∩ (A×A) ⊆ A×A.

K2 F |=k F ÷k G which equals (F ÷k G)k ⊆ F k (inclusion)

Proposition 10. The missing-contraction operator −̂k satisfies K2.

Proof. If F 6|=k G one has F −̂kG = F k ⊆ F k which obviously realizes K2.
To give proof ot the realization of K2 when F |=k G, let us first observe

what holds for MisF (G) ∼ A(F), ∼∈ {⊆,⊇} in this case:
By definition 38 one has MisF (G) ⊆ A(G) and A(G) ⊆ A(F) by assumption

of F |=k G, leading to:(
A(F) \A(G)

)
∪MisF (G) ⊆ A(F) ∪A(G) ⊆ A(F) (90)

From the proof of proposition 9 we know that R(F −̂kG) ⊆ R(F)k. Since

kernelization of F −̂kG can only remove attacks in R(F −̂kG) one has

R(F −̂kG)k ⊆ R(F −̂kG) ⊆ R(F)k (91)

All this leads to

(F −̂kG)k ⊆ F −̂kG ⊆ F k (92)

which implies the realization of K2.

K3 F 6|=k G⇒ F ÷k G ≡k F (vacuity)

Proposition 11. The missing-contraction operator −̂k satisfies K3.

Proof. K3 is realized by definition since F −̂kG = F k ≡k F if F 6|=k G.

K4 6|=k G⇒ F ÷k G 6|=k G which equals 6|=k G⇒ Gk 6⊆ (F ÷k G)k (success)

Proposition 12. The missing-contraction operator −̂k does not satisfy K4.

24

Proof. A counter-example for K4 is given by: F = (A, {(a, a) | a ∈ A}), G =
(A, ∅). Obivously F |=k G and F = F k, G = Gk. Note that MisF (G) = A.
Thus we end up with:

F −̂kG (93)

=
(
F k \Mis G

k, R(F)k ∩ (F k \Mis G
k)2
)

by definition 39 (94)

=
(

(A \A) ∪A,R(F)k ∩
(
(A \A) ∪A

)2)
(95)

=(A,R(F)k ∩A2) (96)

=(A,R(F)k) (97)

|=kG by lemma 1 (98)

K5 (F ÷k G) +k G |=k F which equals F k ⊆
(
(F ÷k G) +k G

)k
(recovery)

Proposition 13. The missing-contraction operator −̂k satisfies K5.

Proof. Again, we will show the realization of K5 with a proof by cases.

First, let us assume F 6|=k G, then one has (F −̂kG) +k G = F k +k G =
F k ∪Gk ⊆ F k which already shows that K5 is realized in this case.

Now let us suppose F |=k G. In order to proof K5’s realization we must

show that A(F) ⊆ A
(
(F −̂kG) +k G

)
and R(F) ⊆ R

(
(F −̂kG) +k G

)
.

Note that by assumption, F |=k F −̂kG and lemma 1 we have Gk ⊆ F k and

(F −̂kG)k ⊆ F k. This means that Gk ∪ (F −̂kG)k is k -r-free as it is obviously
bounded by F k. This also means that

Modk(G) ∪Modk(F −̂kG) 6= ∅ (99)

as Baumann and Brewka [1] were able to show that Modk(F)∩Modk(G) 6=
∅ ⇔ F k ∪Gk is k -r-free.

This can be used to show that A(F) ⊆ A
(
(F −̂kG) +k G

)
holds:

A
(
(F −̂kG) +k G

)
(100)

=A
(
(F −̂kG)k ∪Gk

)
by (99) and definition 32 (101)

=A(F −̂kG) ∪A(Gk) by definition 2 (102)

=(F k \Mis G
k) ∪A(G) by definition 39 and 18 (103)

=
((
A(F) \A(G)

)
∪MisF (G)

)
∪A(G) by definition 38 (104)

⊇
(
A(F) \A(G)

)
∪A(G) = A(F) (105)

25

Now we must show thatR(F)k ⊆ R
(
(F −̂kG)+kG

)
where by (99)R

(
(F −̂kG)+k

G
)

= R(F −̂kG)k ∪R(G)k. First of all, we have:

R(F)k \R(F k−̂kGk) ⊆ R(G)k (106)

This can be proven indirectly: Lets assume we have a (a, b) ∈ R(F)k \
R(F k−̂kGk) satisfying (a, b) 6∈ R(G)k. One has

R(F)k \R(F −̂kG) (107)

=R(F)k \
(
R(F k) ∩ (F k \Mis G

k)2
)

by defintion 39 (108)

=R(F)k \ (F k \Mis G
k)2 (109)

=R(F)k \
((
A(F k) \A(Gk)

)
∪MisFk(Gk)

)2
by definition 38 (110)

Alongside (110), we can conclude by our assumption that (a, b) 6∈
((
A(F k)\

A(Gk)
)
∪MisFk(Gk)

)2
. Hereby we have a, b ∈ A(Gk) as a, b ∈ A(F k) and a, b 6∈

MisFk(Gk). This means (a, b) ∈ R(G)k because otherwise a, b ∈ MisFk(Gk)
which contradicts our assumption, thus proving (106).

Using (106) we can show the realization of K5:

R(F)k \R(F k−̂kGk) ⊆ R(G)k (111)

⇔R(F)k \R(F k−̂kGk) ∪R(F k−̂kGk) ⊆ R(G)k ∪R(F k−̂kGk) (112)

⇔R(F)k ⊆ R(G)k ∪R(F k−̂kGk) (113)

K6 G ≡k H ⇒ F ÷k G ≡k F ÷k H (equivalence)

Proposition 14. The missing-contraction operator −̂k satisfies K6.

Proof. Let H ∈ A such that H ≡k G, then one has Hk = Gk.

Given F 6|=k G one also has F 6|=k H leading to F −̂kG = F k = F −̂kH.
Given F |=k G one has:

F −̂kG (114)

=
(
F k \Mis G

k, R(F)k ∩ (F k \Mis G
k)2
)

by definition 39 (115)

=
(
F k \Mis H

k, R(F)k ∩ (F k \Mis H
k)2
)

by assumption (116)

=F −̂kH by definition 39 (117)

26

6 Revision and Contraction

In this section we will examine the relation of revision and contraction on Dung
logics. More precisely, we will consider the revision operator ∗k and the naive

contraction operator −̇k, as presented in 5.1, analyzing what holds for (F ∗k

G)−̇kG and (F −̇kG) ∗k G.

We will examine the result of (F ∗kG)−̇kG first. By definition 33 and 34 we
know that there is some I = F ∗k G such that there is some H ⊆ F k such that
I = Gk ∪H. Therefore we can write:

(F ∗k G)−̇kG = (Gk ∪ I)−̇kG (118)

We know that, since I is ⊆-maximal, H must be ⊆-maximal, as well. There-
fore we know that

(
F (A) \ F (G), ∅

)
⊆ H because adding arguments to H will

never contribute to not-k -r-freeness. Since F ∗k G |=k G we have by lemma 1

(F ∗k G)−̇kG ⊆ F −̇kG. This leads to(
F (A) \ F (G), ∅

)
⊆ (F ∗k G)−̇kG ⊆ F −̇kG (119)

This result can be extended if the relation of F ∼ G, ∼∈ {|=k, 6|=k} is given.
Assumed F |=k G one has F ∗k G = F k because H = F k leads to a ⊆-maximal
I = Gk ∪ F k. This leads to(

A(F) \A(G), ∅
)
⊆ (F ∗k G)−̇kG = F k−̇kG (120)

Assumed F 6|=k G no specific upper bound can be given which leads to(
A(F) \A(G), ∅

)
⊆ (F ∗k G)−̇kG (121)

Now lets have a closer look at (F −̇kG) ∗k G. Assumed F 6|=k G, one has

F −̇kG = F k leading to (F −̇kG) ∗k G = F k ∗k G = F ∗k G. Given F |=k G, a
more fine grained examination is needed. By definition (36) we have:

(F −̇kG) ∗k G =
(
A(F) \A(G), R(F) ∩

(
A(F) \A(G)

)2) ∗k G (122)

We know that F k is k -r-free and since F |=k G, Gk ⊆ F k. Therefore
F ∗k G = F k. This also means that ∀F ′ ⊆ F k : F ′ ∗k G = F ′ ∪Gk. Alongside
with (122) we have:

(F −̇kG) ∗k G (123)

=
(
A(F) \A(G), R(F) ∩

(
A(F) \A(G)

)2) ∪Gk (124)

=
((
A(F) \A(G)

)
∪A(G), R(F) ∩

(
A(F) \A(G)

)2 ∪R(G)k
)

(125)

=
(
A(F), R(F) ∩

(
A(F) \A(G)

)2 ∪R(G)k
)

(126)

=(F −̇kG) +k G (127)

27

7 Conclusion

7.1 Results

Before we come to the actual conclusion of this thesis, let us quickly recap what
we were able to achieve. We phrased three main theorems whereas at first, the-
orem 4 showed that there is no contraction operator on Dung-logics satisfying
postulates K1-K6. We then introduced two attempts on an contraction opera-

tor for which the naive-contraction operator −̇k - as theorem 5 showed - violated
only postulate K5, namely recovery, whilst the missing-contraction contraction

operator −̂k violated only postulate K4 which is the success postulate. This
was shown by theorem 6.

We admit that the missing-contraction operator is not useful on its own.
But it emphasizes the problem of contraction of Dung-logics being the two
layers of information which make it impossible to successfully contract whilst
ensuring recovery. The missing-contraction operator was an successful attempt
to preserve recovery but was still unsuccessful. This operator however could
be utilized in conjunction with the naive-contraction operator to create a new
contraction operator with minimal AFs for which it will fail to recover.

7.2 The Rescue of Recovery

How can we proceed to implement an contraction operator on Dung-Logics?
One could approach the problem of recovery in two ways: we could make modi-
fications to the postulates or modifications to the logic. In what follows, we will
reflect both of those options.

Let us start with an overview over possible changes to the postulates. The
recovery postulate was introduced to ensure minimal change on contracted AFs.
This however, as Hansson pointed out, might be a requirement that is too
strong and therefore has unwanted side-effects. He was able to show in [6,
p. 101] that contracting a belief set K with a formerly expanded proposition
φ resulted in a belief set which was ⊆-greater than the original belief set as
it still contained certain so-called ”disjunctive residues” enabling recovery for
future expansions. It therefore is not possible to ”empty” a belief set up to
tautologies via contractions as for every contraction those disjunctive residues
would still be part of the resulting belief set. In [7, p. 259] Hansson also gave a
good example for a borderline case of a contraction operator ensuring recovery
and reaching a questionable result. Suppose the belief set K = Cn({φ, ψ})
with φ = ”George is a criminal” and ψ = ”George is a murderer”. Let us now
assume we come to know that George is not a criminal at all. This would lead
us to contract K with φ which in turn would remove ψ as |= ψ ⇒ φ. But φ⇒ ψ
would still be part of the resulting belief set as only this can ensure recovery.
If we now were to expand our belief set with χ = ”George is a shoplifter”, φ
would be part of our belief set again since |= χ⇒ φ. But this would lead to ψ
coming into our belief set again. After having contracted K with φ, we could
not assume that George is a shoplifter without assuming him to be a murderer

28

as well. These examples speak for why the recovery postulate is problematic in
and of itself and might be dropped as a requirement for contraction operators.

There are however reasons specifically applicable to Dung-logics which speak
for why the recovery postulate might be not ideal to be imposed on contraction
operators. As we have already mentioned, the recovery postulate was introduced
with the requirement of minimal change in mind. In the case of Dung-logics
this goal of minimal change is not achieved. The missing-contraction operator
whilst ensuring recovery does not proceed minimal at all. In fact, for F ÷ G
some selection function on the elements of G would be more adequate to ensure
a minimal contraction since it is only needed to remove one element of G in
F in order to contract successfully. One might rather phrase a new postulate
replacing the recovery postulate to ensure truly minimal contractions on AFs.

But when demanding, the recovery postulate should not be omitted or
changed, one could alter the logic operated upon when working with AFs. We
will briefly present the idea behind this logic. Since the problem with recovery
were the two layers of information present in an AF, one could change the logic
on AFs such that it only considers one layer of information which hopefully
should allow for recovery and success at the same time. This could be done
by limiting the logic to the attacks of an AF. Thereby, the arguments of an
AF would be induced by the sets of attacks and syntactical elements of a logic
succeeding this idea would be attacks. The downside of such a logic would be
that isolated arguments, i. e. arguments with no attacks, could not be covered.
At first glance this seems unproblematic since AFs are used to model conflicting
pieces of knowledge, i. e. non-conflicting arguments are not of primary interest.
However, in praxis isolated arguments are of interest because for systems like
intelligent agents it is often needed to represent a complete system of knowledge
which includes non-conflicting pieces of information as well as conflicting ones.

We can conclude this thesis with a summary of three points that have been
opened up by us and which would further enhance the field of Dung-Logics in
combination with abstract argumentation:

1. Can AGM-style operators be expanded to true belief sets of AFs?

2. Can a new postulate replacing recovery be phrased which requires minimal
change on AFs when contracting?

3. Can recovery be ensured when contracting AFs for a different logic only
considering attacks?

References

[1] R. Baumann, G. Brewka, ”AGM Meets Abstract Argumentation: Expansion
and Revision for Dung Frameworks,” in Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence, Buenos Aires, 2015,
pp. 2734-2740

29

[2] C. E. Alchourrón, P. Gärdenfors, D. Makinson, ”On the Logic of Theory
Change: Partial Meet Contraction and Revision Functions,” J. Symb. Logic,
vol. 50, no. 2, pp. 510-530, June, 1985.

[3] P. H. Dung, ”On the Acceptability of Arguments and its Fundamental Role
in Nonmonotonic Reasoning, Logic Programming and n-Person Games,”
Artificial Intelligence, vol. 77, pp. 321-357, Sept., 1995.

[4] R. Baumann, S. Woltran, ”The role of self-attacking arguments in character-
izations of equivalence notions,” in J. Log. Comput., vol. 26, pp. 1293-1313,
Aug., 2016.

[5] E. Oikarinen, S. Woltran, ”Characterizing strong equivalence for argumen-
tation frameworks,” in Artificial Intelligence, vol. 175, pp. 1985-2009, Sept.,
2011.

[6] S. O. Hansson, ”A Dyadic Representation of Belief,” in Belief Revision, P.
Gärdenfors (Ed.), Cambridge, England: CUP, 1992, pp. 89-121.

[7] S. O. Hansson, ”Changes of Disjunctively Closed Bases,” JoLLI, vol. 2, pp.
255-284, 1993.

30

Selbstständigkeitserklärung

Ich versichere, dass ich die vorliegende Arbeit selbständig und nur unter Ver-
wendung der angegebenen Quellen und Hilfsmittel angefertigt habe, insbeson-
dere sind wörtliche oder sinngemäße Zitate als solche gekennzeichnet. Mir ist
bekannt, dass Zuwiderhandlung auch nachträglich zur Aberkennung des Ab-
schlusses führen kann.

Ort, Datum Unterschrift

31

	Introduction
	Background
	Abstract Argumentation
	Argumentation Frameworks
	Semantics and Extensions
	An Argumentation Framework Use Case

	Monotonic Dung-Logics
	Kernels
	A Family of Dung-Logics

	AGM-Theory of Belief Revision
	Expansion
	Revision
	Towards Belief Sets

	Contraction Postulates
	An Impossibility Theorem
	Contraction Operators on Dung-logics
	Naive Contraction
	Missing Contraction

	Revision and Contraction
	Conclusion
	Results
	The Rescue of Recovery

